首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
1. The potential of zafirlukast to inhibit several human cytochrome P450 enzymes is well known. However, pranlukast, a structural analogue of zafirlukast, has not been studied. Accordingly, the inhibitory potential of pranlukast was evaluated and compared with that of zafirlukast, a known CYP2C9 inhibitor, in in vitro microsomal incubation studies. 2. Both pranlukast and zafirlukast showed moderate inhibition of CYP2C9-catalysed tolbutamide 4-methylhydroxylation, competitively inhibiting tolbutamide 4-methylhydroxylation with estimated mean K(i) values of 3.82 +/- 0.50 and 5.86 +/- 0.08 microM, respectively. 3. Pranlukast had no effect on CYP2C19-catalysed S-mephenytoin 4'-hydroxylation or CYP3A4-catalysed midazolam 1-hydroxylation. However, zafirlukast showed minor inhibition of these reactions. Neither pranlukast nor zafirlukast inhibited CYP1A2-catalysed phenacetin O-deethylation, CYP2D6-catalysed dextromethorphan O-demethylation or CYP2E1-catalysed chlorzoxazone 6-hydroxylation. 4. The results suggest that like zafirlukast, pranlukast also has the potential moderately to inhibit CYP2C9-catalysed tolbutamide 4-methylhydroxylation. Therefore, the inhibitory potential of pranlukast should be considered when it is co-administered with CYP2C9 substrates with narrow therapeutic ranges (e.g. S-warfarin, phenytoin).  相似文献   

2.
To evaluate the inhibitory effects of trimethoprim and sulfamethoxazole on cytochrome P450 (P450) isoforms, selective marker reactions for CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 were examined in human liver microsomes and recombinant CYP2C8 and CYP2C9. The in vivo drug interactions of trimethoprim and sulfamethoxazole were predicted in vitro using [I]/([I] + K(i)) values. With concentrations ranging from 5 to 100 microM, trimethoprim exhibited a selective inhibitory effect on CYP2C8-mediated paclitaxel 6alpha-hydroxylation in human liver microsomes and recombinant CYP2C8, with apparent IC(50) (K(i)) values of 54 microM (32 microM) and 75 microM, respectively. With concentrations ranging from 50 to 500 microM, sulfamethoxazole was a selective inhibitor of CYP2C9-mediated tolbutamide hydroxylation in human liver microsomes and recombinant CYP2C9, with apparent IC(50) (K(i)) values of 544 microM (271 microM) and 456 microM, respectively. With concentrations higher than 100 microM trimethoprim and 500 microM sulfamethoxazole, both drugs lost their selectivity for the P450 isoforms. Based on estimated total hepatic concentrations (or free plasma concentrations) of the drugs and the scaling model, one would expect in vivo in humans 80% (26%) and 13% (24%) inhibition of the metabolic clearance of CYP2C8 and CYP2C9 substrates by trimethoprim and sulfamethoxazole, respectively. In conclusion, trimethoprim and sulfamethoxazole can be used as selective inhibitors of CYP2C8 and CYP2C9 in in vitro studies. In humans, trimethoprim and sulfamethoxazole may inhibit the activities of CYP2C8 and CYP2C9, respectively.  相似文献   

3.
Gemfibrozil is a potent inhibitor of human cytochrome P450 2C9.   总被引:13,自引:0,他引:13  
The in vitro inhibitory effects of gemfibrozil on cytochrome P450 (CYP) 1A2 (phenacetin O-deethylation), CYP2A6 (coumarin 7-hydroxylation), CYP2C9 (tolbutamide hydroxylation), CYP2C19 (S-mephenytoin 4'-hydroxylation), CYP2D6 (dextromethorphan O-deethylation), CYP2E1 (chlorzoxazone 6-hydroxylation), and CYP3A4 (midazolam 1'-hydroxylation) activities were examined using pooled human liver microsomes. The in vivo drug interactions of gemfibrozil were predicted in vitro using the [I]/([I] + K(i)) values. Gemfibrozil strongly and competitively inhibited CYP2C9 activity, with a K(i) (IC(50)) value of 5.8 (9.6) microM. In addition, gemfibrozil exhibited somewhat smaller inhibitory effects on CYP2C19 and CYP1A2 activities, with K(i) (IC(50)) values of 24 (47) microM and 82 (136) microM, respectively. With concentrations up to 250 microM, gemfibrozil showed no appreciable effect on CYP2A6, CYP2D6, CYP2E1, and CYP3A4 activities. Based on [I]/([I] + K(i)) values calculated using peak total (or unbound) plasma concentration of gemfibrozil, 96% (56%), 86% (24%), and 64% (8%) inhibition of the clearance of CYP2C9, CYP2C19, and CYP1A2 substrates could be expected, respectively. In conclusion, gemfibrozil inhibits the activity of CYP2C9 at clinically relevant concentrations, and this is the likely mechanism by which gemfibrozil interacts with CYP2C9 substrate drugs, such as warfarin and glyburide. Gemfibrozil may also impair clearance of CYP2C19 and CYP1A2 substrates, but inhibition of other CYP isoforms is unlikely.  相似文献   

4.
The effects of five antifungal drugs, fluconazole, itraconazole, micafungin, miconazole, and voriconazole, on cytochrome P450 (CYP) 2C9-mediated tolbutamide hydroxylation, CYP2C19-mediated S-mephenytoin 4'-hydroxylation, and CYP3A4-mediated nifedipine oxidation activities in human liver microsomes were compared. In addition, the effects of preincubation were estimated to investigate the mechanism-based inhibition. The IC50 value against tolbutamide hydroxylation was the lowest for miconazole (2.0 microM), followed by voriconazole (8.4 microM) and fluconazole (30.3 microM). Similarly, the IC50 value against S-mephenytoin 4'-hydroxylation was the lowest for miconazole (0.33 microM), followed by voriconazole (8.7 microM) and fluconazole (12.3 microM). On the other hand, micafungin at a concentration of 10 or 25 microM neither inhibited nor stimulated tolbutamide hydroxylation and S-mephenytoin 4'-hydroxylation, and the IC50 values for itraconazole against these were greater than 10 microM. These results suggest that miconazole is the strongest inhibitor of CYP2C9 and CYP2C19, followed by voriconazole and fluconazole, whereas micafungin would not cause clinically significant interactions with other drugs that are metabolized by CYP2C9 or CYP2C19 via the inhibition of metabolism. The IC50 value of voriconazole against nifedipine oxidation was comparable with that of fluconazole and micafungin and higher than that of itraconazole and miconazole. The stimulation of the inhibition of CYP2C9-, CYP2C19-, or CYP3A4-mediated reactions by 15-min preincubation was not observed for any of the antifungal drugs, suggesting that these drugs are not mechanism-based inhibitors.  相似文献   

5.
Our objective was to identify the cytochrome P450 (CYP) enzymes that metabolise pioglitazone and to examine the effects of the CYP2C8 inhibitors montelukast, zafirlukast, trimethoprim and gemfibrozil on pioglitazone metabolism in vitro. The effect of different CYP isoform inhibitors on the elimination of a clinically relevant concentration of pioglitazone (1 microM) and the formation of the main primary metabolite M-IV were studied using pooled human liver microsomes. The metabolism of pioglitazone by CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5 was investigated using human recombinant CYP isoforms. In particular, the inhibitors of CYP2C8, but also those of CYP3A4, markedly inhibited the elimination of pioglitazone and the formation of M-IV by HLM. Inhibitors selective to other CYP isoforms had a minor effect only. Of the recombinant isoforms, CYP2C8 (20 pmol/ml) metabolised pioglitazone markedly (56% in 60 min.), and also CYP3A4 had a significant effect (37% in 60 min.). Montelukast, zafirlukast, trimethoprim and gemfibrozil inhibited pioglitazone elimination in HLM with IC50 values of 0.51 microM, 1.0 microM, 99 microM and 98 microM, respectively, and the formation of the metabolite M-IV with IC50 values of 0.18 microM, 0.78 microM, 71 microM and 59 microM, respectively. In conclusion, pioglitazone is metabolised mainly by CYP2C8 and to a lesser extent by CYP3A4 in vitro. CYP2C9 is not significantly involved in the elimination of pioglitazone. The effect of different CYP2C8 inhibitors on pioglitazone pharmacokinetics needs to be evaluated also in vivo because, irrespective of their in vitro CYP2C8 inhibitory potency, their pharmacokinetic properties may affect the extent of interaction.  相似文献   

6.
Dexloxiglumide (DEX) is a cholecystokinin type-1 receptor antagonist under development for the treatment of constipation-predominant irritable bowel syndrome. Studies of the potential interaction of DEX with human cytochromes P450 (CYPs) were conducted in vitro. DEX (300 micro M), both with and without a 15-min pre-incubation, was incubated with pooled human liver microsomes and substrates selective for each of eight CYPs. This resulted in >30% inhibition of tolbutamide 4-methyl-hydroxylase (CYP2C9/10) and lauric acid 11-hydroxylase (CYP2E1) activities. Mean K(i) (SD) for CYP2C9/10 and CYP2E1 were 69.0 (24.3) and 426 (60) microM, respectively. Incubations of [(14)C]DEX with pooled human liver microsomes produced one major phase I metabolic fraction, with V(max)=131 pmol/min/mg protein and K(m)=23.7 microM. Further incubations with (i) liver microsomes from 16 individual donors (correlation analysis), (ii) Supersomes trade mark and (iii) selective chemical inhibitors, implicated CYP3A4/5, CYP2B6 and CYP2C9 in the formation of this component. Thus, DEX interacts with CYP2C9 both as inhibitor (K(i)=69.0 microM) and as substrate in vitro. However, based on the maximum concentration (27 microM) after repeated oral doses of 200 mg t.i.d. and the unbound fraction (0.03) of DEX in human plasma, no clinically relevant metabolic interactions with other CYP substrates are predicted.  相似文献   

7.
1.?The potential of zafirlukast to inhibit several human cytochrome P450 enzymes is well known. However, pranlukast, a structural analogue of zafirlukast, has not been studied. Accordingly, the inhibitory potential of pranlukast was evaluated and compared with that of zafirlukast, a known CYP2C9 inhibitor, in in vitro microsomal incubation studies.

2.?Both pranlukast and zafirlukast showed moderate inhibition of CYP2C9-catalysed tolbutamide 4-methylhydroxylation, competitively inhibiting tolbutamide 4-methylhydroxylation with estimated mean Ki values of 3.82 ± 0.50 and 5.86 ± 0.08?μM, respectively.

3.?Pranlukast had no effect on CYP2C19-catalysed S-mephenytoin 4′-hydroxylation or CYP3A4-catalysed midazolam 1-hydroxylation. However, zafirlukast showed minor inhibition of these reactions. Neither pranlukast nor zafirlukast inhibited CYP1A2-catalysed phenacetin O-deethylation, CYP2D6-catalysed dextromethorphan O-demethylation or CYP2E1-catalysed chlorzoxazone 6-hydroxylation.

4.?The results suggest that like zafirlukast, pranlukast also has the potential moderately to inhibit CYP2C9-catalysed tolbutamide 4-methylhydroxylation. Therefore, the inhibitory potential of pranlukast should be considered when it is co-administered with CYP2C9 substrates with narrow therapeutic ranges (e.g. S-warfarin, phenytoin).  相似文献   

8.
Polysaccharide peptide (PSP), isolated from COV-1 strain of Coriolus versicolor, is commonly used as an adjunct in cancer chemotherapy in China. In this study, the effects of whole PSP extract and water extract of PSP on 4-hydroxylation of tolbutamide were investigated in rat liver microsomes in vitro and in vivo in the rat. Both the whole PSP extract and the water soluble fraction (0.5-20 microM) decreased the metabolism of tolbutamide to 4-hydroxytolbutamide in vitro. Enzyme kinetics studies showed that PSP inhibited tolbutamide 4-hydroxylase activity in a competitive, concentration-dependent manner. The whole PSP extract had a Ki value of 12.6 microM and IC50 at 18.4 microM, while the water extract had a Ki value of 6.9 microM and IC50 at 9.8 microM. Sulphaphenazole, a specific human CYP2C9 inhibitor, showed a Ki value of 30.8 microM and IC50 at 44.0 microM in the test system. In the pharmacokinetic studies in vivo, acute PSP (4 micromol/kg, i.p.) treatment did not produce significant changes in tolbutamide clearance, but produced a decrease in the Cinitial (7.4%) and an increase in the Vd (7.4%). Sub-chronic pre-treatment of PSP (1-2 micromol/kg/day, i.p.) for three days did not affect the clearance and AUC of tolbutamide, but the Cinitial was decreased, together with increases in the T1/2, and Vd. The formation of 4-hydroxytolbutamide in vivo was decreased in both acute and sub-chronic studies. Taken together, this study demonstrated the PSP can inhibit tolbutamide 4-hydroxylation both in vitro and in vivo. Despite the fact that CYP isoforms that metabolise tolbutamide are different between rat and human liver due to different catalytic characteristics, and rat studies may not be directly extrapolatable to man, the concomitant use of PSP with other CYP2C substrates should be carefully monitored.  相似文献   

9.
Trospium chloride, an atropine derivative used for the treatment of urge incontinence, was tested for inhibitory effects on human cytochrome P450 enzymes. Metabolic activities were determined in liver microsomes from two donors using the following selective substrates: dextromethorphan (CYP2D6), denitronifedipine (CYP3A4), caffeine (CYP1A2), chlorzoxazone (CYP2E1), S-(+)-mephenytoin (CYP2C19), S-(-)-warfarin (CYP2C9) and coumarin (CYP2A6). Incubations with each substrate were carried out without a possible inhibitor and in the presence of trospium chloride at varying concentrations (37-3000 microM) at 37 degrees in 0.1 M KH2PO4 buffer containing up to 3% DMSO. Metabolite concentrations were determined by high-performance liquid chromatography (HPLC) in all cases except CYP2A6 where direct fluorescence spectroscopy was used. First, trospium chloride IC50 values were determined for each substrate at respective K(M) concentrations. Trospium chloride did not show relevant inhibitory effects on the metabolism of most substrates (IC50 values considerably higher than 1 mM). The only clear inhibition was seen for the CYP2D6-dependent high-affinity O-demethylation of dextromethorphan, where IC50 values of 27 microM and 44 microM were observed. Therefore, additional dextromethorphan concentrations (0.4-2000 microM) were tested. Trospium chloride was a competitive inhibitor of the reaction with Ki values of 20 and 51 microM, respectively. Thus, trospium chloride has negligible inhibitory effects on CYP3A4, CYP1A2, CYP2E1, CYP2C19, CYP2C9 and CYP2A6 activity but is a reasonably potent inhibitor of CYP2D6 in vitro. Compared to therapeutic trospium chloride peak plasma concentrations below 50 nM, the 1000-times higher competitive inhibition constant Ki however suggests that inhibition of CYP2D6 by trospium chloride is without any clinical relevance.  相似文献   

10.
AIMS: To determine the effects of mibefradil on the nletabolism in human liver microsomal preparations of the HMG-CoA reductase inhibitors simvastatin, lovastatin, atorvastatin, cerivastatin and fluvastatin. METHODS: Metabolism of the above five statins (0.5, 5 or 10 microM), as well as of specific CYP3A4/5 and CYP2C8/9 marker substrates, was examined in human liver microsomal preparations in the presence and absence of mibefradil (0.1-50 microM). RESULTS: Mibefradil inhibited, in a concentration-dependent fashion, the metabolism of the four statins (simvastatin, lovastatin, atorvastatin and cerivastatin) known to be substrates for CYP3A. The potency of inhibition was such that the IC50 values (<1 microM) for inhibition of all of the CYP3A substrates fell within the therapeutic plasma concentrations of mibefradil, and was comparable with that of ketoconazole. However, the inhibition by mibefradil, unlike that of ketoconazole, was at least in part mechanism-based. Based on the kinetics of its inhibition of hepatic testosterone 6beta-hydroxylase activity, mibefradil was judged to be a powerful mechanism-based inhibitor of CYP3A4/5, with values for Kinactivation, Ki and partition ratio (moles of mibefradil metabolized per moles of enzyme inactivated) of 0.4 min(-1), 2.3 microM and 1.7, respectively. In contrast to the results with substrates of CYP3A, metabolism of fluvastatin, a substrate of CYP2C8/9, and the hydroxylation of tolbutamide, a functional probe for CYP2C8/9, were not inhibited by mibefradil. CONCLUSION: Mibefradil, at therapeutically relevant concentrations, strongly suppressed the metabolism in human liver microsomes of simvastatin, lovastatin, atorvastatin and cerivastatin through its inhibitory effects on CYP3A4/5, while the effects of mibefradil on fluvastatin, a substrate for CYP2C8/9, were minimal in this system. Since mibefradil is a potent mechanism-based inhibitor of CYP3A4/5, it is anticipated that clinically significant drug-drug interactions will likely ensue when mibefradil is coadministered with agents which are cleared primarily by CYP3A-mediated pathways.  相似文献   

11.
OBJECTIVES: To determine the relative contribution of cytochromes P450 (CYP) 2C9 and 2C19 to the formation of 5-(-4-hydroxyphenyl)-5-phenylhydantion (HPPH) from phenytoin (PPH). DESIGN: Hydroxylation of PPH to form HPPH was studied in vitro using human liver microsomes and microsomes from cDNA-transfected human lymphoblastoid cells. RESULTS: Formation of HPPH from PPH in liver microsomes had a mean (+/- SEM) apparent Km [substrate concentration corresponding to 50% of maximal reaction velocity (Vmax)] of 23.6 +/- 1.8 mumol/l. Coincubation with the CYP2C9 inhibitor, sulfaphenazole (SPA), at 5 mumol/l reduced reaction velocity to less than 15% of control values. The mean inhibitor concentration at which 50% inhibition is achieved (IC50 value) for SPA versus PPH hydroxylation (0.49 microM) was similar to the SPA IC50 versus flurbiprofen hydroxylation (0.46 microM) and tolbutamide hydroxylation (0.7-1.5 microM). In contrast, the CYP2C19 inhibitor omeprazole (OME) at 10 mumol/l produced only a small degree of inhibition. Incubation of PPH with microsomes from cDNA-transfected human lymphoblastoid cells containing CYP1A2, 2A6, 2B6, 2C8, 2D6, 2E1, or 3A4 yielded no detectable formation of HPPH. Only CYP2C9 and 2C19 had PPH hydroxylation activity, with apparent Km values for the high-affinity component of 14.6 mumol/l and 24.1 mumol/l, respectively. Based on Vmax values in liver microsomes, the Vmax and Km values in expressed CYPs and the relative abundance of the two isoforms in human liver, CYP2C9, and 2C19 were estimated to have relative contributions of 90% and 10%, respectively, to net intrinsic clearance. CONCLUSIONS: Formation of HPPH from PPH is mediated exclusively by CYP2C9 and 2C19, with CYP2C9 playing the major role.  相似文献   

12.
The IC50 values of 14 drugs were determined in recombinantly expressed CYP2C9 (rCYP2C9) and human hepatocytes and the data used to simulate clinical area under the plasma concentration-time curve (AUC) changes upon coadministration with prototypic CYP2C9 substrates. There was an excellent correlation between IC(50, apparent) values determined using diclofenac and naproxen as CYP2C9 substrates (r2 = 0.82, p < 0.0001), with values being generally higher in the naproxen assay. After correcting for nonspecific binding, the IC(50, unbound) values were similar between the assays, for the majority of compounds. Two compounds, amiodarone and benzbromarone, demonstrated substrate-specific differences, activating naproxen O-demethylase to approximately 250% of control activity at 1 mM and 1 microM, respectively, while inhibiting diclofenac 4'-hydroxylation with IC(50, apparent) values of 3 microM and 0.04 microM, respectively. CYP2C9 IC(50, apparent) values generated in human hepatocytes were systematically higher than those determined with rCYP2C9. After correcting for nonspecific binding, there was an excellent correlation of IC(50, unbound) values generated in the different milieu (r2 = 0.88, p < 0.0001). The ratio of inhibitor concentration at the entrance to the liver to the inhibition constant ([I]in/Ki) was used to simulate clinical deltaAUC changes and compared with that observed in vivo. Where [I]in, total/Ki, apparent) was used, there were zero false negatives (observed deltaAUC >or=2, predicted deltaAUC <2), eight correct assignations, and seven false positives (observed deltaAUC 2. Where [I]in, unbound/Ki, unbound was used, there was one false negative, 14 correct assignations, and zero false positives. In summary, the data presented here suggest that for CYP2C9 interactions, the use of total liver inhibitor concentrations may indeed avoid false negatives, but more realistic predictions may be achieved using unbound liver inhibitor concentrations and unbound in vitro inhibition parameters.  相似文献   

13.
OBJECTIVE: To screen the inhibitory effects of H1-antihistamines on hepatic bufuralol 1'-hydroxylation and on tolbutamide 4-methylhydroxylation in human liver microsomes. METHODS: Bufuralol 1'-hydroxylation and tolbutamide 4-methylhydroxylation were used as index reactions for CYP2D6 and CYP2C9, respectively. The metabolites of both reactions were measured using high-performance liquid chromatography and were used as indicators of whether CYP2D6 or CYP2C9 activities were inhibited or unaffected by the agents. RESULTS: All five H1-antihistamines studied showed a concentration-dependent inhibition of CYP2D6-mediated bufuralol 1'-hydroxylation with 50% inhibitory concentration (IC50) values of 32-109 microM. Cyclizine and promethazine showed inhibitory effects on tolbutamide 4-methylhydroxylation with IC20 values of 85 microM and 88 microM, respectively. Tripelennamine, chlorpheniramine, and diphenhydramine showed no inhibitory effects on CYP2C9. CONCLUSION: All five H1-antihistamines studied inhibited CYP2D6 markedly, but only cyclizine and promethazine inhibited CYP2C9 at concentrations above that usually seen in plasma. Promethazine and chlorpheniramine inhibited CYP2D6 at concentrations that are very close to their therapeutic plasma concentrations. Further studies in humans, especially in poor metabolizers of CYP2D6, will be required to confirm these findings.  相似文献   

14.
Silibinin, the main constituent of silymarin, a flavonoid drug from silybum marianum used in liver disease, was tested for inhibition of human cytochrome P-450 enzymes. Metabolic activities were determined in liver microsomes from two donors using selective substrates. With each substrate, incubations were carried out with and without silibinin (concentrations 3.7-300 microM) at 37 degrees in 0.1 M KH2PO4 buffer containing up to 3% DMSO. Metabolite concentrations were determined by HPLC or direct spectroscopy. First, silibinin IC50 values were determined for each substrate at respective K(M) concentrations. Silibinin had little effect (IC50>200 microM) on the metabolism of erythromycin (CYP3A4), chlorzoxazone (CYP2E1), S(+)-mephenytoin (CYP2C19), caffeine (CYP1A2) or coumarin (CYP2A6). A moderate effect was observed for high affinity dextromethorphan metabolism (CYP2D6) in one of the microsomes samples tested only (IC50=173 microM). Clear inhibition was found for denitronifedipine oxidation (CYP3A4; IC50=29 microM and 46 microM) and S(-)-warfarin 7-hydroxylation (CYP2C9; IC50=43 microM and 45 microM). When additional substrate concentrations were tested to assess enzyme kinetics, silibinin was a potent competitive inhibitor of dextromethorphan metabolism at the low affinity site, which is not CYP2D6 (Ki.c=2.3 microM and 2.4 microM). Inhibition was competitive for S(-)-warfarin 7-hydroxylation (Ki,c=18 microM and 19 microM) and mainly non-competitive for denitronifedipine oxidation (Ki,n=9 microM and 12 microM). With therapeutic silibinin peak plasma concentrations of 0.6 microM and biliary concentrations up to 200 microM, metabolic interactions with xenobiotics metabolised by CYP3A4 or CYP2C9 cannot be excluded.  相似文献   

15.
中药有效成分对细胞色素P450酶的抑制活性评价   总被引:6,自引:1,他引:5  
目的评价10个中药有效成分对人肝微粒体5种CYP同工酶(CYP1A2、2C9、2C19、2D6和3A4)的抑制活性,为临床合理用药提供参考。方法在混合人肝微粒体孵育体系中,分别以非那西丁O-脱乙基、甲苯磺丁脲4-羟基化、奥美拉唑5-羟基化、右美沙芬O-脱甲基化和咪达唑仑1'-羟基化反应为5种同工酶代谢活性的标志,用阳性抑制剂对试验体系进行验证。应用LC-MS检测受试物对探针底物代谢产物生成量的影响,得到抑制率并计算IC50。结果柚皮素是CYP2C19的强抑制剂和1A2的中等抑制剂(IC50为0.43和4.79μmol.L-1)。异鼠李素是CYP1A2、2C9和2C19的中等抑制剂,IC50分别为5.36、1.40和3.28μmol.L-1。大黄酸对CYP1A2和3A4的IC50分别为8.32和2.50μmol.L-1,为中等抑制剂。喜树碱是CYP2C9和2C19的中等抑制剂(IC50为2.01和2.48μmol.L-1)。金雀花碱、小檗碱和齐墩果酸抑制CYP2C9、2D6和2C19的IC50分别为8.13、4.69和3.56μmol.L-1,为中等抑制剂。结论柚皮素、异鼠李素、金雀花碱、盐酸小檗碱、喜树碱、大黄酸和齐墩果酸对CYP同工酶有不同程度的抑制作用,在临床应用时应注意可能的药-药相互作用。  相似文献   

16.
AIMS: To identify the cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) isoforms responsible for the formation of the primary metabolite(s) of zaltoprofen, and to predict possible drug interactions by investigating the inhibition of CYP isoforms in vitro. METHODS: The metabolism of zaltoprofen was studied in vitro using recombinant CYP and UGT isoform cDNA-expression systems. The effects of selective isoform inhibitors on zaltoprofen metabolism were studied using human liver microsomes. The inhibitory effects of zaltoprofen on the metabolism of selective probe substrates for CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4 were also determined in human liver microsomes. RESULTS: Zaltoprofen was extensively metabolized by CYP2C9 and UGT2B7. CYP2C9 catalysed sulphoxidation but not hydroxylation of zaltoprofen. In the human liver microsomal metabolism study, zaltoprofen metabolism was markedly inhibited by sulphaphenazole, a selective inhibitor of CYP2C9. In the drug interaction study, negligible inhibition (< 15%) of the activities of CYP1A2, CYP2C19, CYP2D6, CYP2E1 and CYP3A4 was apparent at 5 micro g ml(-1), the maximum plasma concentration observed in humans after oral administration of an 80 mg zaltoprofen tablet. However, zaltoprofen inhibited CYP2C9 by 26% at 5 micro g ml(-1). At higher concentrations, zaltoprofen produced some inhibition of CYP2C9 (IC50 = 19.2 micro g ml(-1); 64.4 micro m) and CYP3A4 (IC50 = 53.9 micro g ml(-1); 181 micro m). The free drug concentrations in plasma (0.02 micro g ml(-1), 67.0 nm) at the Cmax of the clinically effective doses are much lower than the IC50 values corrected for the nonspecific binding ratio of zaltoprofen to microsomal protein (15.5 micro g ml(-1) for CYP3A4, 49.5 micro g ml(-1) for CYP3A4). Furthermore, the maximum free drug concentrations in the hepatic intracellular was calculated to be 0.068 micro g ml(-1) and the increase in the AUC in the presence of zaltoprofen was estimated to be only 0.4% for CYP2C9 substrates and 0.1% for CYP3A4 substrates, respectively. CONCLUSIONS: Zaltoprofen is predominantly metabolized by CYP2C9 and UGT2B7, and is considered unlikely to cause significant drug interactions in vivo when coadministered with CYP substrates at clinically effective doses.  相似文献   

17.
To identify which cytochrome P-450 (CYP) isoform(s) are involved in the major pathway of disopyramide (DP) enantiomers metabolism in humans, the in vitro formation of mono-N-desalkyldisopyramide from each DP enantiomer was studied with human liver microsomes and nine recombinant human CYPs. Substrate inhibition showed that SKF 525A and troleandomycin potently suppressed the metabolism of both DP enantiomers with IC50 values for R(-)- and S(+)-DP of <7.3 and <18.9 microM, respectively. In contrast, only weak inhibitory effects (i.e., IC50 > 100 microM) were observed for five other representative CYP isoform substrates [i.e., phenacetin (CYP1A1/2), sparteine (CYP2D6), tolbutamide (CYP2C9), S-mephenytoin (CYP2C19), and p-nitrophenol (CYP2E1)]. Significant correlations (P <.01, r = 0.91) were found between the activities of 11 different human liver microsomes for mono-N-dealkylation of both DP enantiomers and that of 6beta-hydroxylation of testosterone. Conversely, no significant correlations were observed between the catalytic activities for DP enantiomers and those for the O-deethylation of phenacetin, 2-hydroxylation of desipramine, hydroxylation of tolbutamide, and 4'-hydroxylation of S-mephenytoin. Further evidence for involvement of CYP3A P450s was revealed by an anti-human CYP3A serum that inhibited the mono-N-dealkylation of both DP enantiomers and 6beta-hydroxylation of testosterone almost completely (i.e., >90%), whereas it only weakly inhibited (i.e., <15%) CYP1A1/2- or 2C19-mediated reactions. Finally, the recombinant human CYP3A3 and 3A4 showed much greater catalytic activities than seven other isoforms examined (i.e., CYP1A2, 2A6, 2B6, 2C9, 2D6, 2E1, and 3A5) for both DP enantiomers. In conclusion, the metabolism of both DP enantiomers in humans would primarily be catalyzed by CYP3A4, implying that DP may have an interaction potential with other CYP3A substrates and/or inhibitors.  相似文献   

18.
AIMS: To examine the potency of ticlopidine (TCL) as an inhibitor of cytochrome P450s (CYP450s) in vitro using human liver microsomes (HLMs) and recombinant human CYP450s. METHODS: Isoform-specific substrate probes of CYP1A2, 2C19, 2C9, 2D6, 2E1 and 3A4 were incubated in HLMs or recombinant CYPs with or without TCL. Preliminary data were generated to simulate an appropriate range of substrate and inhibitor concentrations to construct Dixon plots. In order to estimate accurately inhibition constants (Ki values) of TCL and determine the type of inhibition, data from experiments with three different HLMs for each isoform were fitted to relevant nonlinear regression enzyme inhibition models by WinNonlin. RESULTS: TCL was a potent, competitive inhibitor of CYP2C19 (Ki = 1.2 +/- 0.5 microM) and of CYP2D6 (Ki = 3.4 +/- 0.3 microM). These Ki values fell within the therapeutic steady-state plasma concentrations of TCL (1-3 microM). TCL was also a moderate inhibitor of CYP1A2 (Ki = 49 +/- 19 microM) and a weak inhibitor of CYP2C9 (Ki > 75 microM), but its effect on the activities of CYP2E1 (Ki = 584 +/- 48 microM) and CYP3A (> 1000 microM) was marginal. CONCLUSIONS: TCL appears to be a broad-spectrum inhibitor of the CYP isoforms, but clinically significant adverse drug interactions are most likely with drugs that are substrates of CYP2C19 or CYP2D6.  相似文献   

19.
The inhibitory effects of six commonly used calcium channel blockers on three major cytochrome P-450 activities were examined and characterized in human liver microsomes. All six compounds reversibly inhibited CYP2D6 (bufuralol 1'-hydroxylation) and CYP2C9 (tolbutamide methyl hydroxylation) activities. The IC(50) values for the inhibition of CYP2D6 and CYP2C9 for nicardipine were 3 to 9 microM, whereas those for all others ranged from 14 to >150 microM. Except for nifedipine, all calcium channel blockers showed increased inhibitory potency toward CYP3A activities (testosterone 6beta-hydroxylation and midazolam 1'-hydroxylation) after 30-min preincubation with NADPH. IC(50) values for the inhibition of testosterone 6beta-hydroxylase obtained in the NADPH-preincubation experiment for nicardipine (1 microM), verapamil (2 microM), and diltiazem (5 microM) were within 10-fold, whereas those for amlodipine (5 microM) and felodipine (13 microM) were >200-fold of their respective plasma concentrations reported after therapeutic doses. Similar results also were obtained based on midazolam 1'-hydroxylase activity. Unlike the observations with mibefradil, a potent irreversible inhibitor of CYP3A, the NADPH-dependent inhibition of CYP3A activity by nicardipine and verapamil was completely reversible on dialysis, whereas that by diltiazem was partially restored (80%). Additional experiments revealed that nicardipine, verapamil, and diltiazem formed cytochrome P-450-iron (II)-metabolite complex in both human liver microsomes and recombinant CYP3A4. Nicardipine yielded a higher extent of complex formation ( approximately 30% at 100 microM), and was a much faster-acting inhibitor (maximal inhibition rate constant approximately 2 min(-1)) as compared with verapamil and diltiazem. These present findings that the CYP3A inhibition caused by nicardipine, verapamil, and diltiazem is, at least in part, quasi-irreversible provide a rational basis for pharmacokinetically significant interactions reported when they were coadministered with agents that are cleared primarily by CYP3A-mediated pathways.  相似文献   

20.
A method has been developed for the high-throughput inhibition screening of the major human cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) using an in vitro substrate cocktail and liquid chromatography-tandem mass spectrometry (LC-MS-MS). A cocktail consisting of the selective substrates phenacetin (CYP1A2), tolbutamide (CYP2C9), omeprazole (CYP2C19), bufuralol (CYP2D6), and midazolam (CYP3A4) was incubated with human liver microsomes. The metabolic reactions were terminated with methanol containing dextrorphan as an internal standard. Following centrifugation, the supernatant was analyzed by LC-MS-MS employing a fast gradient. The concentrations of the substrate metabolites-paracetamol, 4-hydroxytolbutamide, 5-hydroxyomeprazole, 1'-hydroxybufuralol, and 1'-hydroxymidazolam-in each sample were determined by LC-MS-MS in a single assay. The method was validated by incubating known CYP inhibitors (furafylline, CYP1A2; sulfaphenazole, CYP2C9; s-mephenytoin, CYP2C19; quinidine, CYP2D6; and troleandomycin, CYP3A4) with the individual substrates they were known to inhibit and with the substrate cocktail. IC50s (microM) determined using the substrate cocktail were in good agreement with those obtained with individual substrates (furafylline, 2.9 vs. 2.0; sulfaphenazole, 0.75 vs. 0.72; s-mephenytoin, 170 vs. 180; quinidine, 0.17 vs. 0.24; troleandomycin, 2.6 vs. 3.2) and with previously reported values in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号