首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
常见分集合并系统的性能分析   总被引:1,自引:0,他引:1  
在移动通信中,分集技术是一种最有效的抗衰落技术。本文对3种常见的线性合并分集技术进行简要分析,给出它们的基带表示和合并器输出信噪比的概率密度函数(pdf),由此给出它们的合并增益。针对系统采用MPSK调制的情况,对瑞利衰落信道的3种合并分集系统的比特误码率(BER)性能进行理论研究,分别给出选择性合并(SC)和最大比率合并(MRC)系统的理论比特误码率表达式;对于等增益合并(EGC)分集,给出了一种近似的EGC系统的输出信噪比的pdf,由此导出EGC的一种近似的BER表达式,由蒙特卡罗仿真结果可以看出此近似的BER数值结果是准确的。数值结果显示:MRC性能最好,EGC性能稍差,而SC性能较差。文中给出的分析方法对于实际分集系统的理论研究具有普遍的指导意义。  相似文献   

2.
Performance of M-PSK with GSC and EGC with Gaussian weighting errors   总被引:2,自引:0,他引:2  
Using a moment-generating function (MGF)-based approach, we study the performance of M-ary phase-shift keying (M-PSK) with generalized selection combining (GSC) and equal gain combining (EGC) in fading channels (including Rayleigh, Rician, Nakagami-m, and Nakagami-q fading) with independent and identically distributed (i.i.d) branches. Analytical expressions for the error and outage probabilities, the signal-to-noise-ratio (SNR) statistics, and the channel capacity of M-PSK diversity receivers are derived, taking into account the effects of Gaussian weighting errors and all relevant system and channel parameters. Unlike the case of perfect channel-state information (CSI), the outage probability for the case of imperfect channel estimation (ICE) is not only a function of the normalized SNR with respect to the SNR threshold, but also a function of the operating SNR itself. The SNR loss of the M-PSK GSC and EGC receivers due to ICE and the relation between the receiver input and output SNRs for ICE are derived. Our results show that, even with ICE, GSC and EGC are effective in improving the output SNR and significantly reduce the error floor and the channel-capacity loss caused by ICE.  相似文献   

3.
Cooperative communication is a recently popular concept which allows single-antenna devices to benefit from spatial diversity. The performance analysis of cooperative communication using generalized selection combining (GSC) over independent not necessarily identically distributed Nakagami-m fading channels is presented and compared with that of the conventional maximal ratio combining (MRC) and selection combining (SC) schemes. With the aid of Padé approximants theory, new closed-form expression is derived for the moment-generating function (MGF) of the GSC output signal-to-noise ratio (SNR). MGF is an important tool for researching the system performance. In this paper, the average bit-error probability is accurately approximated using the well-known MGF approach. Numerical results show that the proposed mathematical analysis is accurate and that for the more severe fading cases, the GSC receivers are closer to the optimum MRC receivers.  相似文献   

4.
Diversity reception over generalized-K (KG) fading channels   总被引:2,自引:0,他引:2  
A detailed performance analysis for the most important diversity receivers operating over a composite fading channel modeled by the generalized-K (Kg) distribution is presented. The Kg distribution has been recently considered as a generic and versatile distribution for the accurate modeling of a great variety of short term fading in conjunction with long term fading (shadowing) channel conditions. For this relatively new composite fading model, expressions for important statistical metrics of maximal ratio combining (MRC), equal gain combining (EGC), selection combining (SC) and switch and stay combining (SSC) diversity receivers are derived. Using these expressions and by considering independent but not necessarily identical distributed fading channel conditions, performance criteria, such as average output signal-to-noise ratio, amount of fading and outage probability are obtained in closed form. Moreover, following the moments generating function (MGF) based approach for MRC and SSC receivers, and the Pade approximants method for SC and EGC receivers, the average bit error probability is studied. The proposed mathematical analysis is complemented by various performance evaluation results which demonstrate the accuracy of the theoretical approach.  相似文献   

5.
In this letter, we evaluate the performance of the dual-branch maximal ratio combining (MRC) diversity scheme in nonidentical correlated Weibull fading channels with arbitrary parameters. We first use the Pade/spl acute/ approximation (PA) to find closed-form rational expressions for the moment generating function (MGF) of the output signal-to-noise ratio (SNR) of the MRC receiver. Different performance measures, such as the outage probability and the average symbol-error rate for different linear modulations, are then presented using the well-known MGF approach. Furthermore, the effect of the input SNRs unbalancing, the severity of fading, and the degree of correlation on the system performance are also studied. Our results are validated by comparing them with computer simulations, and we show that the PA technique is indeed a convenient tool for such performance evaluation studies.  相似文献   

6.
In this letter, an alternative moments-based approach for the performance analysis of an L-branch predetection equal gain combiner (EGC) over independent or correlated Nakagami-m fading channels is presented. Exact closed-form expressions are derived for the moments of the EGC output signal-to-noise ratio (SNR), while the corresponding moment-generating function (MGF) is accurately approximated with the aid of Pade/spl acute/ approximants theory. Important performance criteria are studied; the average output SNR, which is expressed in closed form both for independent and correlative fading and for arbitrary system parameters, the average symbol-error probability for several coherent, noncoherent, and multilevel modulation schemes, and the outage probability, which are both accurately approximated using the well-known MGF approach. The proposed mathematical analysis is illustrated by various numerical results, and computer simulations have been performed to verify the validity and the accuracy of the theoretical approach.  相似文献   

7.
In this letter, we study the asymptotic performance of hybrid-selection/maximal-ratio combining (HS/MRC) and postdetection HS/equal-gain combining (HS/EGC) over generalized fading channels for large average signal-to-noise ratios (ASNRs). By evaluating the asymptotic moment generating function of the HS/MRC output SNR at high ASNR, we derive the diversity and coding gains for HS/MRC for a large class of modulation formats and versatile fading conditions, including different types of fading channels and nonidentical SNR statistics across diversity branches. Our analytical results reveal that the diversity gains of HS/MRC and HS/EGC are equivalent to that of MRC, and the difference in the coding gains for different modulation formats is manifested in terms of a modulation factor defined in this letter. Some new analytical results about effects of the number of combined branches for HS/MRC and noncoherent combining loss of HS/EGC are also provided.  相似文献   

8.
This work derives the average bit error rate (BER) of the uplink and downlink multicarrier code division multiple access (MC-CDMA) systems using maximum ratio combining (MRC) and equal gain combining (EGC) with synchronization errors over fading channels. The derived equation can simultaneously incorporate the parameters of the fading channel and all of the synchronization errors, including frequency offset, carrier phase jitter, and timing jitter. Numerical results indicate that those two combining schemes on the uplink and downlink MC-CDMA systems are degraded by all of the normalized synchronization errors over 10−2. The comparison outcomes between MRC and EGC reveal that the MRC generally outperforms EGC in the uplink MC-CDMA system. However, EGC achieves better performance when the number of users is small, the normalized synchronization errors are low and the signal to noise ratio (SNR) is high. In the downlink system, EGC mainly outperforms MRC when the SNR and the number of users are gradually increased and the normalized synchronization errors are low. Therefore, the selection of MRC or EGC depends on the SNR, the synchronization errors and the number of users in uplink and downlink MC-CDMA systems.  相似文献   

9.
赵太飞  王秀峰  王花  余叙叙  李永明 《红外与激光工程》2018,47(12):1222002-1222002(6)
根据弱湍流信道中对数正态分布模型,建立了紫外光非直视分集接收系统。采用开关键控(OOK)调制,在不同闪烁指数和接收天线数下,分别对比分析了最大比合并(MRC)、等增益合并(EGC)和选择性合并(SC)的误码性能。仿真结果表明,相比于无分集情况,采用三种合并方式的误码率性能有明显提升。在接收天线数相同的情况下,三种合并方式中,MRC的性能最优,其次是EGC,SC的性能最差。对比分析了不同接收天线数时的误码率性能,随着接收天线数的增加,三种合并方式的误码性能得到了较大改善。在弱湍流信道中,采用分集接收技术能够减轻衰落的影响,提高分集增益。  相似文献   

10.
Using the notion of the “spacing” between ordered exponential random variables, a performance analysis of the generalized selection combining (GSC) diversity scheme over Rayleigh fading channels is presented and compared with that of the conventional maximal-ratio combining and selection combining schemes. Starting with the moment generating function (MGF) of the GSC output signal-to-noise ratio (SNR), we derive closed-form expressions for the average combined SNR, outage probability, and average error probability of a wide variety of modulation schemes operating over independently, identically distributed (i.i.d.) diversity paths. Because of their simple form, these expressions readily allow numerical evaluation for cases of practical interest. The results are also extended to the case of non-i.i.d. diversity paths  相似文献   

11.
We propose an online signal-to-noise ratio (SNR) estimation scheme for Nakagami-m (1960) fading channels with L branch equal gain combining (EGC) diversity. We derive the SNR estimate based on the statistical ratio of certain observables over a block of data, and use the SNR estimates in the iterative decoding of turbo codes on Nakagami-m fading channels with L branch EGC diversity. We evaluate the turbo decoder performance using the SNR estimate under various fading and diversity scenarios (m = 0.5, 1, 5 and L = 1, 2, 3) and compare it with the performance using perfect knowledge of the SNR and the fade amplitudes.  相似文献   

12.
A performance analysis of two hybrid selective combining/maximal ratio combining (SC/MRC) diversity receivers over Nakagami-m (1960) fading channels with a flat multipath intensity profile is presented and numerically compared with that of the conventional SC and MRC schemes. Numerical results for particular cases of interest show that the bit error rate (BER) degradation arising from the use of hybrid SC/MRC instead of MRC is independent of the average signal-to-noise ratio (SNR) regardless of the severity of the fading and that MRC provides a higher rate of improvement than the hybrid SC/MRC as the severity of fading decreases  相似文献   

13.
Performance analysis of predetection EGC receiver in Weibull fading channel   总被引:2,自引:0,他引:2  
The predetection equal gain combining (EGC) receiver is generally known to have a performance that is close to the maximal ratio combining (MRC) receiver while having relatively less implementation complexity. The bit error rate (BER) of an EGC receiver for binary, coherent and noncoherent modulations has been analysed for an independent Weibull fading channel. Numerical results have been compared with the available results for selection combining (SC) and MRC diversity receivers.  相似文献   

14.
In the bit-error rate (BER) analysis of code-division multiple-access (CDMA) systems, a Gaussian approximation is widely used to tackle the multiple access interference (MAI), although it does not always offer satisfactory accuracy. This paper investigates the BER performance of synchronous multicarrier (MC) CDMA systems over Nakagami-m-fading channels in a different way. We present an accurate and unified BER analysis for synchronous MC-CDMA systems. To facilitate our analysis, we assume a synchronous uplink, whose BER performance can be intuitively viewed as a lower BER bound of the more realistic asynchronous MC-CDMA. The basic idea is that, by using the Gauss-Chebyshev quadrature (GCQ) rule to perform inverse Laplace transform, an accurate BER can be numerically obtained from the moment generating function (MAG) of the output decision variable at a receiver, without any assumption about the MAI distribution. First, signals on all subcarriers of MC-CDMA systems are assumed to experience independent fading. Two standard diversity combining techniques, equal gain combining (EGC) and maximal ratio combining (MRC), are employed. The BER performance in both downlink and synchronous uplink is analyzed. We then consider a more general system model, in which signals on different subcarriers undergo correlated fading. The asymptotic (error floor) performance of downlink MC-CDMA with MRC is studied. In particular, we investigate the effects of spreading sequences and the delay spread of the channel on the system performance. Numerical examples are provided to show the main results of this paper. The accuracy of the GCQ and MGF based solution is verified by different approaches such as Monte Carlo integration and the exact residue method. In addition, the accuracy of the commonly used Gaussian approximation is also examined.  相似文献   

15.
Order diversity combining technique is one of efficient methods to lower the complexity but not to significantly degrade performance. Recently, Eng and Milstein [1] proposed a novel order-combining technique, called the second order diversity combining (SC2) and third order diversity combining (SC3) and applied to Rayleigh fading channel. SC2 and SC3 schemes mean that the two (three) signals with the first two (three) largest amplitudes among the branches are chosen and coherently combined. However, when compared to Rayleigh distribution, the Nakagami-m distribution [10] provides a more general and versatile way to model wireless channel. For the reason, the bit error rate (BER) performance of proposed schemes were then analyzed with order statistic method and compared to the traditional diversity technique over Nakagami fading environment in this paper. The results are compared to maximal ratio combining (MRC), and conventional selection combining (SC) in coherent reception and to equal gain combining (EGC) in noncoherent reception. The results show that SC is in performance the worst for either in coherent or in noncoherent schemes, as expected. The performance differences between SC2 (SC3) and MRC (EGC) are not significant when the diversity order L 3, but the difference will increase when L 5. It is worth noting that the result of [1] is a special case with fading figure, m = 1. It is also observed the performance is much affected by the number of diversity branches L, the fading figure m, and the signal-to-noise ratio (SNR).  相似文献   

16.
In this paper the impact of the imperfect reference signal extraction is investigated, the bit error rate (BER) performance of multibranch selection combining (SC) receiver for binary and quaternary phase-shift keying (BPSK and QPSK) signals in a generalized α-μ fading channel are shown. The combined effects of imperfect phase estimation of the received signal, diversity order, fading severity and average signal-to-noise ratio (SNR) per bit on BER values are examined. The analytical results are verified by Monte Carlo simulations.  相似文献   

17.
A great deal of attention has been devoted in the literature to studying the bit error rate (BER) performance of diversity combining systems in the presence of Rayleigh, Rice, and Nagakami-m fading. By comparison, the literature is relatively sparse in comparable analyses over log-normal channels which typically characterize shadowing from indoor obstacles and moving human bodies. One reason for this disparity stems from the difficulty in evaluating the exact average BER when log-normal variates are involved, using, for example, the moment-generating function (MGF) approach, due to the inability of expressing the MGF itself in a simple closed form. Since it is possible to evaluate the marginal and joint statistical moments as well as the cumulative distribution function (CDF) associated with a log-normal distribution in closed form, we rather focus here on other performance measures, namely, average combined output signal-to-noise ratio, amount of fading, and outage probability. The first two performance measures depend only on the moments, whereas the outage probability depends solely on the cdf. Closed-form expressions (in terms of known functions), single-integral representations, or upper and lower bounds are obtained for these measures corresponding to maximal-ratio combining, selection combining, and switch-and-stay combining schemes, allowing for the possibility of correlation between the two branches. Numerical evaluations of these expressions illustrating the performances of each individual diversity type as well as comparisons among them are also presented.  相似文献   

18.
In this paper, we develop analytical tools for the performance analysis of coded, coherent communication systems on independent and identically distributed Nakagami-m fading channels with selection combining (SC) diversity. First, we derive an exact expression for the moment generation function (MGF) of the signal-to-noise ratio (SNR) of a code symbol at the output of the selection combiner. Next, based on Gauss-Chebyshev quadrature and Gauss-Laguerre quadrature rules, we propose a simple to compute, yet accurate, numerical solution for the pairwise error probability (PEP) of coded M-phase-shift keying (PSK) signals. Using the PEP expressions, we present the union bound-based bit-error performance of trellis-coded modulation schemes and turbo codes. Finally, we derive an exact expression for the computational cutoff rate of a coded system with M-PSK signaling and SC diversity, and show that the cutoff rate expression is a simple function of the MGF of the SNR at the output of the diversity combiner.  相似文献   

19.
This letter analyzes the performance of cooperative diversity wireless networks using amplify-and-forward relaying over independent, non-identical, Nakagami-m fading channels. The error rate and the outage probability are determined using the moment generating function (MGF) of the total signal-to-noise-ratio (SNR) at the destination. Since it is hard to find a closed form for the probability density function (PDF) of the total SNR, we use an approximate value instead. We first derive the PDF and the MGF of the approximate value of the total SNR. Then, the MGF is used to determine the error rate and the outage probability. We also use simulation to verify the analytical results. Results show that the derived error rate and outage probability are tight lower bounds particularly at medium and high SNR  相似文献   

20.
The authors propose an efficient moment generating function (MGF)-based method to evaluate the performance of generalized selection combining (GSC) over different fading channels. Employing a recently proposed method which is, however, only applicable to GSC diversity with independent and identically distributed branches, they derive a general MGF expression for the GSC output signal-to-noise ratio (SNR) for generalized fading channels, where the channel statistics in different diversity branches may be nonidentical or even distributed according to different distribution families. The resulting MGF expression is applicable to the analysis of the error probability, the outage probability, and the SNR statistics for GSC in a number of wireless communications scenarios with generalized fading. Numerical examples are presented to illustrate the application of the new analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号