首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The paper examines the impact of Gaussian distributed weighting errors (in the channel gain estimates used for coherent combination) on both the output statistics of a hybrid selection/maximal-ratio (SC/MRC) receiver and the degradation of the average symbol-error rate (ASER) performance as compared with the ideal case. New expressions are derived for the probability density function, cumulative distribution function and moment generating function (MGF) of the coherent hybrid SC/MRC combiner output signal-to-noise ratio (SNR). The MGF is then used to derive exact, closed-form, ASER expressions for binary and M-ary modulations in conjunction a nonideal hybrid SC/MRC receiver in a Rayleigh fading environment. Results for both selection combining (SC) and maximal-ratio combining (MRC) are obtained as limiting cases. Additionally, the effect of the weighting errors on both the outage rate of error probability and the average combined SNR is investigated. These analytical results provide insights into the tradeoff between diversity gain and combination losses, in concert with increasing orders of diversity branches in an energy-sharing communication system  相似文献   

2.
For maximal ratio combining (MRC) diversity over correlated fading channels with Gaussian channel gains, we utilize unitary diagonalization of the channel covariance matrix to decorrelate the physical channels into uncorrelated virtual channels to obtain the moment generating function (MGF) of the received signal‐to‐noise ratio (SNR). The MGF thus obtained has a compact form and can be universally applied to various popular fading models. In addition to the advantage of simple derivation procedure, this general MGF can be readily modified to express various scenarios of channel power distributions as well as joint fading models. To demonstrate these advantages, we use the generalized Ricean fading as a specific example to compare our derivation and our MGF expression with an existing work in the literature. Again, we present numerical simulations for MRC reception of binary phase shift keying (BPSK) signals over Nakagami fading to compare with existing results appearing in the literature. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Cooperative communication is a recently popular concept which allows single-antenna devices to benefit from spatial diversity. The performance analysis of cooperative communication using generalized selection combining (GSC) over independent not necessarily identically distributed Nakagami-m fading channels is presented and compared with that of the conventional maximal ratio combining (MRC) and selection combining (SC) schemes. With the aid of Padé approximants theory, new closed-form expression is derived for the moment-generating function (MGF) of the GSC output signal-to-noise ratio (SNR). MGF is an important tool for researching the system performance. In this paper, the average bit-error probability is accurately approximated using the well-known MGF approach. Numerical results show that the proposed mathematical analysis is accurate and that for the more severe fading cases, the GSC receivers are closer to the optimum MRC receivers.  相似文献   

4.
Cooperative diversity is a promising technology for future wireless networks. In this paper, we derive exact closed-form expressions for the average bit error rate (BER) and outage probability (Pout) for differential equal gain combining (EGC) in cooperative diversity networks. The considered network uses amplify-and-forward relaying over independent non-identical Nakagami-m fading channels. The performance metrics (BER and Pout) are derived using the moment generating function (MGF) method. Furthermore, we found (in terms of MGF) the SNR moments, the average signal-to-noise ratio (SNR) and amount of fading. Numerical results show that the differential EGC can bene?t from the path-loss reduction and outperform the traditional multiple-input single output (MISO) system. Also, numerical results show that the performance of the differential EGC is comparable to the maximum ratio combining (MRC) performance.  相似文献   

5.
In this paper, we provide a unified analysis for wireless system over generalized fading channels that is modeled by the two parameter generalized gamma model. This model is versatile enough to represent short-term fading such as Weibull, Nakagami-m, or Rayleigh as well as shadowing. The performance measures such as the amount of fading, average bit error rate, and signal outage are considered for analysis. With the aid of moment generating function (MGF) approach and Padé approximation (PA) technique, outage probability and average bit error rate have been evaluated for a variety of modulation formats. We first use the PA technique to find a simple way to evaluate compact rational expressions for the MGF of output signal-to-noise ratio, unlike previously derived intricate expressions in terms of Fox’s H and MeijerG functions. Using these rational expressions, we evaluate the performance of wireless receivers under a range of representative channel fading conditions. Our results are validated through computer simulations, which shows perfect match.  相似文献   

6.
Diversity reception over generalized-K (KG) fading channels   总被引:2,自引:0,他引:2  
A detailed performance analysis for the most important diversity receivers operating over a composite fading channel modeled by the generalized-K (Kg) distribution is presented. The Kg distribution has been recently considered as a generic and versatile distribution for the accurate modeling of a great variety of short term fading in conjunction with long term fading (shadowing) channel conditions. For this relatively new composite fading model, expressions for important statistical metrics of maximal ratio combining (MRC), equal gain combining (EGC), selection combining (SC) and switch and stay combining (SSC) diversity receivers are derived. Using these expressions and by considering independent but not necessarily identical distributed fading channel conditions, performance criteria, such as average output signal-to-noise ratio, amount of fading and outage probability are obtained in closed form. Moreover, following the moments generating function (MGF) based approach for MRC and SSC receivers, and the Pade approximants method for SC and EGC receivers, the average bit error probability is studied. The proposed mathematical analysis is complemented by various performance evaluation results which demonstrate the accuracy of the theoretical approach.  相似文献   

7.
In this paper, we have analyzed the performance of maximal ratio combing (MRC) diversity receiver of the wireless communication systems over the composite fading environment, which is modelled by using the generalized-K distribution. However, this distribution has been considered as a versatile distribution for the precise modelling of a great variety of the short-term fading in conjunction with the long-term fading (shadow fading) channel conditions. In this proposed analysis, we have derived the mathematical expression for the moment generating function (MGF) of the generalized-K fading channel model that is used to evaluate a novel closed-form expression of the average bit error rate for (BER) the binary phase-shift keying /binary frequency-shift keying and average symbol error rate (SER) for the rectangular quadrature amplitude modulation scheme. We have also derived the mathematical expressions for the outage probability as well as the channel capacity for the generalized-K fading channel model.  相似文献   

8.
In this paper, we analyze the performance of multi-hop multi-branch amplify-and-forward (AF) networks over generalized fading channels. Using the moment generating function (MGF)-based approach, we develop general expressions for the outage probability and symbol-error rate (SER) performance of the system with maximal ratio combining (MRC) receiver. The MGF-based approach relies on numerical integration. To gain insights into system performance, we therefore investigate the asymptotic outage and SER performance of the system with MRC and selection combining (SC) receiver at the destination. In particular, we develop the asymptotic statistics of the end-to-end signal-to-noise ratio (SNR) of an AF multi-hop link. We further derive the cumulative density function of the sum of the individual end-to-end SNRs, received from different diversity paths for MRC receiver. We also study the power allocation problem in a multi-hop multi-branch system with MRC receiver. In generalized Gamma fading environments, we seek to find the power allocation strategy that maximizes the SNR at the destination subject to a total power constraint. By means of simulations, we validate our theoretical developments and verify the efficiency of our proposed power allocation in improving the received SNR compared to a generic cooperative system with no power allocation. We also conclude that our asymptotic expressions for the outage probability and SER match the simulations very well in medium-to-high-SNR regime.  相似文献   

9.
A performance analysis of two hybrid selective combining/maximal ratio combining (SC/MRC) diversity receivers over Nakagami-m (1960) fading channels with a flat multipath intensity profile is presented and numerically compared with that of the conventional SC and MRC schemes. Numerical results for particular cases of interest show that the bit error rate (BER) degradation arising from the use of hybrid SC/MRC instead of MRC is independent of the average signal-to-noise ratio (SNR) regardless of the severity of the fading and that MRC provides a higher rate of improvement than the hybrid SC/MRC as the severity of fading decreases  相似文献   

10.
In this paper, the performance of wireless system employing microdiversity to mitigate the effects of short-term fading and macrodiversity to reduce long-term fading (shadowing) effects is studied. The system model assumes implementation of maximal-ratio combining (MRC) at the microlevel and selection combining (SC) at the macrolevel. The received signal envelope follows a Rician distribution and it also suffers gamma shadowing. Novel expressions for the probability density function (PDF), cumulative distribution function (CDF), and moment-generating function (MGF) of the output signal-to-noise ratio (SNR) are obtained. Several useful performance criteria, such as the moments of the output SNR and outage probability are analytically derived. Moreover, the average bit error probability (ABEP) for noncoherent binary differential phase-shift keying (BDPSK) is calculated using the MGF based approach while the ABEP for coherent binary phase-shift keying (BPSK) is studied by averaging the conditional bit error probability over the PDF. Numerical results are graphically presented to show the effects of various system parameters to the system performance, as well as the enhancement due to use of the combination of micro- and macrodiversity. Some of numerical results are complemented by equivalent computer simulated results which validate the accuracy of the proposed analysis. The agreement between the Rician-gamma and Rician-lognormal fading model is also established.  相似文献   

11.
为解决采用最小均方误差(MMSE)信道预测的发射天线选择(TASP)/接收天线最大比合并(MRC)的无线通信系统设计问题,利用抛物柱面函数以及高斯Q函数的近似表达式和矩生成函数(MGF)法,分别推导了瑞利块衰落信道上采用TASP/MRC天线分集的相干检测M进制正交和双正交信号的平均误符号率(ASER)精确表达式以及正交信号ASER的近似表达式.数值计算和仿真结果验证了采用TASP/MRC和相干检测的正交/双正交ASER精确表达式的正确性以及正交信号ASER近似表达式的准确性.上述M进制正交/双正交信号ASER精确或近似表达式,可用于设计采用相干检测M进制正交和双正交信号的TASP/MRC天线分集系统,并能够快速地确定收发天线数和信道预测器级数等参数,避免耗时的计算机仿真.  相似文献   

12.
We derive analytical expressions for the symbol error probability (SEP) for a hybrid selection/maximal-ratio combining (H-S/MRC) diversity system in multipath-fading wireless environments. With H-S/MRC, L out of N diversity branches are selected and combined using maximal-ratio combining (MRC). We consider coherent detection of M-ary phase-shift keying (MPSK) and quadrature amplitude modulation (MQAM) using H-S/MRC for the case of independent Rayleigh fading with equal signal-to-noise ratio averaged over the fading. The proposed problem is made analytically tractable by transforming the ordered physical diversity branches, which are correlated, into independent and identically distributed (i.i.d.) “virtual branches,” which results in a simple derivation of the SEP for arbitrary L and N. We further obtain a canonical structure for the SEP of H-S/MRC as a weighted sum of the elementary SEPs, which are the SEPs using MRC with i.i.d. diversity branches in Rayleigh fading, or equivalently the SEPs of the nondiversity (single-branch) system in Nakagami fading, whose closed-form expressions are well-known. We present numerical examples illustrating that H-S/MRC, even with L≪N, can achieve a performance close to that of N-branch MRC  相似文献   

13.
分析了地面多个中继节点采用放大转发协议辅助卫星通信构成的星地混合协作网存在同信道干扰时的性能.首先在用户端采用最大比合并方案并受到同信道干扰的情况下,得到其输出信干噪比的表达式.其次针对卫星链路服从阴影莱斯分布和地面链路服从瑞利分布的情况,推导出输出信干噪比的矩母函数,并进一步得到系统平均误符号率的解析表达式.接着,推导出高信噪比条件下系统平均误符号率的近似表达,为估算系统的性能提供了更加快速的方法.最后,计算机仿真验证了理论计算公式的准确性,并分析了信道参数、中继数目和调制方式对星地混合协作传输的影响.  相似文献   

14.
Analysis of minimum selection H-S/MRC in Rayleigh fading   总被引:1,自引:0,他引:1  
We analyze the error performance of an improved hybrid selection/maximal-ratio combining (H-S/MRC) technique called minimum selection H-S/MRC in flat Rayleigh fading for coherent digital modulation schemes. Here the minimum number of diversity branches are selected such that their combined signal-to-noise ratio is above a given threshold. We derive a closed-form expression for the distribution of the number of selected branches. This distribution is used to obtain the symbol error probability.  相似文献   

15.
在n-Rayleigh信道下,研究了MRC(Maximal Ratio Combining)合并接收系统的平均码字错误率(ASEP)性能。基于矩生成函数(MGF)的方法,推导了MRC接收系统在n-Rayleigh衰落信道上采用M进制相移键控(MPSK),M进制正交幅度调制(MQAM)和M进制脉冲幅度调制(MPAM)等几种M进制数字调制方式的ASEP的计算式。然后在不同条件下,仿真了系统的ASEP性能,仿真值与理论值相一致,理论分析的正确性得到了证明。分析结果表明:分集支路数和衰弱因子对系统的ASEP性能有重要影响。  相似文献   

16.
In this letter, we study the asymptotic performance of hybrid-selection/maximal-ratio combining (HS/MRC) and postdetection HS/equal-gain combining (HS/EGC) over generalized fading channels for large average signal-to-noise ratios (ASNRs). By evaluating the asymptotic moment generating function of the HS/MRC output SNR at high ASNR, we derive the diversity and coding gains for HS/MRC for a large class of modulation formats and versatile fading conditions, including different types of fading channels and nonidentical SNR statistics across diversity branches. Our analytical results reveal that the diversity gains of HS/MRC and HS/EGC are equivalent to that of MRC, and the difference in the coding gains for different modulation formats is manifested in terms of a modulation factor defined in this letter. Some new analytical results about effects of the number of combined branches for HS/MRC and noncoherent combining loss of HS/EGC are also provided.  相似文献   

17.
Performance analysis of quadrature amplitude modulation (QAM) schemes for cooperative amplify-and-forward (AF) dual-hop relaying system over independent and identically distributed (i.i.d.) Rayleigh fading channels are presented in this paper. Specifically, we derive closed-form lower-bound expressions of average symbol error rate (ASER) for general order rectangular QAM (RQAM) and cross QAM (XQAM) using well-known moment generating function (MGF) based approach with maximal ratio combining (MRC) scheme. Further, using best relay selection scheme (BRS), we also derive an ASER expression for XQAM. Numerical and simulated results are compared to validate the correctness of derived expressions. Furthermore, comparative analysis of RQAM and XQAM schemes is discussed which confirms that XQAM is better alternative over RQAM for transmission of odd number of bits per symbol for the considered system model. We also compare the ASER performance for MRC and BRS schemes in terms of SNR gain using different XQAM constellations. Moreover, the impact of system parameters on ASER is also highlighted.  相似文献   

18.
In this letter, we present a moment generating function (MGF) based performance analysis of generalized selection combining (GSC) receivers operating over independent and identically distributed (i.i.d.) K fading channels. Analytical expressions for the marginal MGF of the signal-to-noise ratio of a single diversity branch for integer plus one-half values of the fading parameter are obtained and used to efficiently evaluate the average error probability of GSC receivers.  相似文献   

19.
In the present contribution, we propose a comprehensive framework for the analysis of cooperative dual-hop wireless systems over generalized fading channels, which use an amplify and forward (AF) relaying mechanism with blind and semi-blind relays. In particular, the proposed framework provides either exact results or very accurate bounds for computing the moment generating function (MGF) of the end-to-end signal-to-noise ratio (SNR) for various fading channel models typically encountered in real propagation environments. Furthermore, with the help of the MGF-based approach for performance analysis of wireless systems over fading channels, we will show that important performance indexes can be easily derived from the MGF. With respect to previous published articles on the matter, the main contribution of the paper is twofold: i) by relying on the properties of the Meijer-G function, either exact expressions or accurate bounds for the MGF of the end-to-end SNR are provided, and ii) the analysis encompasses the vast majority of fading channel models. Numerical and simulation results will be compared to substantiate the analytical derivation.  相似文献   

20.
The performance of wireless communication systems is improved over flat fading channel by using Alamouti coding scheme, which provides the quality of diversity gain. In this paper, performance analysis of symbol error rate (SER) and particle swarm optimization (PSO)–based power allocation (PA) for Alamouti amplify and forward (AF) relaying protocol using maximum ratio combining (MRC) technique is presented. Analytical expression of SER upper bound and SER approximation is derived for Alamouti AF relaying protocol with quadrature phase shift keying (QPSK) modulation over Rayleigh fading channel and Rician fading channel. In addition, PSO‐based optimum PA factor is calculated on the basis of the minimum SER of proposed method. PSO‐based optimum PA gives 0.5 dB of improved signal‐to‐noise ratio (SNR) compared with the equal power allocation (EPA). The theoretical approximate SER result is compared with the simulated SER. The proposed protocol provides full diversity gain and reduces SER compared with the existing AF and decode and forward (DF) relaying protocols over Rayleigh fading channel and Rician fading channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号