首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
船式拖拉机分动箱传动系统的特性为船式拖拉机动力系统平稳、高效运行关键因素,建立分动箱一级传动啮合齿轮热弹耦合模型.在额定工况条件下,对直齿圆柱齿轮传动啮合特性进行有限元接触仿真分析,研究了热弹耦合、不同摩擦系数对齿轮接触压力、齿面啮合区域法向载荷及啮合刚度的影响规律.结果 表明,齿轮啮合过程中摩擦生热使得齿轮接触压力变小、啮合刚度变小,且齿面接触考虑摩擦系数时齿面接触压力与比不考虑摩擦系数齿面受到接触压力大.将仿真得到的时变啮合刚和刚度与理论计算值进行对比,验证有限元瞬态分析方法的可行性,为后续分动箱系统动态响应分析作基础,为降低齿轮转动过程产生振动与噪声和分动箱系统的优化设计提供依据.  相似文献   

2.
为研究高转速情况下时变啮合刚度和啮合冲击对斜齿轮传动振动特性的影响,以某纯电动汽车高速斜齿轮传动为研究对象,建立了弯-扭-轴动力学模型;采用改进的基于承载接触分析的计算方法获得时变啮合刚度曲线,并计算了啮合冲击时间及啮合冲击力幅值;分析了时变啮合刚度、啮合冲击以及两者综合3种激励条件下高速斜齿轮传动系统的振动特性。结果表明:时变啮合刚度激励下,在过共振区,转速变化对系统振动的影响不显著;啮合冲击激励以及综合激励条件下,系统振动随转速的升高而增大,与啮合冲击激励相比,综合激励下振动加速度增幅较缓。研究结果可为纯电动汽车高速斜齿轮传动的设计和工程应用提供参考依据。  相似文献   

3.
建立了一个包含无侧隙啮合、轴承间隙、时变啮合刚度、重力激励和其它外部激励的斜齿行星传动系统平移-扭转耦合动力学模型,研究了影响齿面接触状态的主要因素以及齿面接触状态对斜齿行星齿轮传动系统动态特性的影响规律。仿真结果表明,无侧隙啮合对斜齿行星传动系统的轴承力和齿面啮合力有显著的影响,无侧隙啮合与侧隙、轴承间隙密切相关,并且当行星齿轮的组件重力很大时,重力激励是造成无侧隙啮合的重要原因。  相似文献   

4.
针对双渐开线齿轮传动动态特性问题,通过建立双渐开线齿轮的有限元模型,综合考虑齿面摩擦与齿轮啮合刚度二因素,对双渐开线齿轮传动系统进行了有限元模态分析,运用响应曲面法研究了齿面摩擦与齿轮啮合刚度对双渐开线齿轮振动变形和模态频率的影响;选取不同模态阶数对双渐开线齿轮传动系统进行了动态特性研究,分析了不同模态阶数下双渐开线齿轮的振动变形与模态频率变化状况。研究结果表明,随着齿面摩擦因数与齿轮啮合刚度的增加,不同模态阶数下双渐开线齿轮传动系统各阶振动变形与模态频率均显著增加,齿面摩擦与齿轮啮合刚度对双渐开线齿轮传动动态特性有一定影响,在对齿轮传动系统进行动态特性研究时,必须对齿面摩擦与齿轮啮合刚度进行充分考虑。  相似文献   

5.
斜齿轮存在移动载荷及空间结构复杂等因素,导致斜齿轮齿面剥落故障振动特征的提取非常困难。为了分析斜齿轮齿面剥落故障引起的振动响应特征,提出了基于切片法和势能法的斜齿轮齿面剥落故障啮合刚度的计算方法,考虑斜齿轮齿面剥落故障接触线长度的变化,分析了齿面剥落在长度和宽度两个方向扩展对时变啮合刚度的影响。同时,建立了6自由度斜齿轮系统动力学模型,获得了不同长度齿面剥落的动态响应特征及不同转速和负载对其的影响。研究结果表明,新的计算方法能够准确计算斜齿轮齿面剥落故障对啮合刚度、动态响应等特性的影响,可为齿轮系统状态监测提供依据。  相似文献   

6.
基于齿面摩擦的斜齿轮传动动力学特性分析   总被引:1,自引:0,他引:1  
为了研究斜齿轮齿面摩擦的动力学特性,建立了12自由度斜齿轮系统动力学模型,以时变的啮合刚度作为研究基础,并考虑了假定摩擦系数恒定、接触线上载荷均布状况下摩擦力的影响,以一斜齿轮对为研究对象,采用Newmark法求解齿轮系统的动力学响应,分析有摩擦和无摩擦两种工况下位移变化,结果表明在摩擦力作用下,垂直齿轮啮合线方向的振动加剧,对传动系统平稳有不良影响。模型亦有助于斜齿轮啮合摩擦激励变化特性的进一步研究,结论对齿轮系统的设计分析有一定参考价值。  相似文献   

7.
弧齿锥齿轮传动系统动态特性研究   总被引:2,自引:0,他引:2  
基于集中质量法建立了弧齿锥齿轮8自由度弯-轴-扭三维空间动力学模型.模型中考虑了啮合刚度的时变性、几何传递误差的非线性、齿轮副间隙及轴承刚度的非线性.利用齿面接触分析与齿面承载接触分析求出几何传递误差与轮齿综合啮合刚度,利用轴承变形理论求出系统非线性支承刚度,使用Runge-Kutta法对传动系统进行动态响应求解,并研究了这些因素对弧齿锥齿轮振动的影响.结果表明:几何传递误差是影响齿轮振动的最主要因素,由啮合刚度变化引起的一系列振动受转速与负载的影响较大.  相似文献   

8.
为研究某混合动力汽车齿轮传动系统的动力学特性,在考虑时变啮合刚度、啮合阻尼、齿侧间隙、轴承刚度、轴承阻尼、综合误差等非线性因素的基础上,建立了整个齿轮传动系统的平移扭转动力学模型,确认时变啮合刚度和相位角对系统固有频率的影响。基于研究结果,通过改变齿轮参数使系统的固有频率有效避开啮合频率,从而改善齿轮传动系统的振动特性。  相似文献   

9.
人字齿行星齿轮传动系统振动特性研究   总被引:1,自引:0,他引:1  
通过对人字齿行星齿轮传动系统多重啮合间相位关系的分析,给出了考虑啮合相位的时变啮合刚度计算公式。考虑误差激励和时变啮合刚度激励,在行星架随动坐标系中建立了人字齿行星齿轮传动系统的平移-扭转耦合动力学模型。针对两组不同啮合相位的行星齿轮传动系统,采用傅里叶级数法求解其动力学模型,得到频域解和时域解,且分析啮合相位对人字齿行星齿轮系统振动特性的影响。  相似文献   

10.
《机械传动》2016,(6):149-154
齿轮是汽车变速器传动系统的动力载体,其动力学特性很大程度上决定了变速器的振动特性。利用时变接触线法求解了理论时变啮合刚度;结合齿距误差等内部激励建立了单对斜齿轮副弯扭轴耦合非线性动力学模型。采用龙格库塔方法进行数值求解,得到了斜齿轮副的振动响应时域曲线、频谱图。研究结果表明,时变啮合刚度越小,齿轮振动程度增大越迅速。加入齿距误差后,振动加速度时域特性以轴向振动变化最为明显,且齿距误差越小,振动强烈程度增大越缓慢。  相似文献   

11.
Transmission error is an important reason for instability in helical gears. A six-degree-of-freedom dynamic model coupled flexional, torsional and axial motion of a helical gear transmission system, which includes time varying mesh stiffness, bearing supporting stiffness, mesh damping and backlash, is developed, after taking into account the dynamic characteristics and vibration responses of helical gear in three dimensions. Influences of involute contact ratio, bearing supporting stiffness, mesh damping and backlash on the dynamic transmission errors and vibration stability of the helical gear system are investigated using numerical simulation technique. The effects on dynamic transmission errors and stabilities by contact ratio, supporting stiffness and mesh damping as well as gear backlash are analyzed. The intrinsic relationship between above parameters and dynamic transmission errors and stabilities for helical gear system are presented. The stable and unstable regions under different parameters are given. The results in this paper can be helpful to the dynamic and stable design of a helical gear transmission system.  相似文献   

12.
振动大、噪声高是三环齿轮传动存在的突出问题,线性的振动模型无法完全解释其动力学行为。在考虑输入轴和支承轴的弹性、齿轮啮合综合误差、时变啮合刚度以及齿侧间隙的情况下,建立了三环齿轮传动的弯扭耦合非线性动力学模型。采用适当的坐标变换,将线性恢复力和非线性恢复力共存的动力学方程组转化为统一的矩阵形式,并对方程进行量纲一化处理,为进一步研究三环齿轮传动的非线性动力学行为打下基础。  相似文献   

13.
齿轮系统动力学模型内部激励参数的优化设置研究   总被引:1,自引:0,他引:1  
时变啮合刚度与齿侧间隙是齿轮传动系统的主要内部激励源,决定了齿轮系统动力学的基本特点和性质。啮合刚度的时变性影响齿轮系统的稳定性、引起系统的参数共振,齿侧间隙则引起系统强烈的非线特性。考虑时变啮合刚度、齿侧间隙等激励源,建立了齿轮系统非线性动力学模型,从模型参数设置合理性的新角度阐述时变啮合刚度、齿侧间隙对系统动态特性的影响。结果表明:在低速工运行况下,过度简化时变啮合刚度会扼杀由单双齿交替啮合而产生的振动冲击响应;此时齿轮处于单侧啮合状态,在建模时可以不考虑齿侧间隙的影响,以达到简化模型、提高求解效率的目的。而在较高速运行状态下,齿轮处于单边冲击或双边冲击状态,齿侧间隙引起系统强烈的非线性特性,建模时必须考虑齿侧间隙。  相似文献   

14.
含间隙的斜齿轮副扭振分析与试验研究   总被引:2,自引:0,他引:2  
建立了科齿轮副的间隙型非线性扭振模型,其中考虑了斜齿轮副的啮合综合误差,齿侧间隙和时变啮合刚度。采用三维有限元法计算了斜齿轮副啮合刚度,用三次样条插值拟合得到时变啮合刚度函数。用数值积分方法对系统的非线性动力学微分方程进行了求解,获得了斜齿轮副在外转矩作用下受静态传动误差激励的非线性稳态强迫响应,并对系统的动态响应进行了测试,试验和理论计算结果了一致性证实了本文所提出模型和解法的正确性。  相似文献   

15.
以一个两对斜齿轮耦合的三平行轴转子系统膨胀机子系统为研究对象,建立了斜齿轮啮合副动力学模型和转子系统有限元模型,考虑了齿轮啮合刚度、方位角、啮合角、螺旋角以及主动轴转动方向的影响,推导出齿轮啮合刚度矩阵。基于模态叠加法,对弯-扭耦合转子系统膨胀机子系统进行了固有特性分析和瞬态方式的不平衡响应分析,得到齿轮啮合前、后系统加载处的不平衡响应变化曲线。研究表明,齿轮间的耦合使系统之间的振动强烈,系统可能会在某个非固有频率处不平衡响应进行积累叠加,出现最大振动的现象,同时识别出共振峰的产生机理。齿轮耦合对转子系统动力学特性产生了很大的影响,使系统振型表现为耦合振型,必须以耦合的方式分析系统的振动特性,为防止系统发生大的振动提供依据,对齿轮系统的设计和故障分析具有指导意义。  相似文献   

16.
为了分析功率二分支齿轮传动系统的动力学特性,构建由斜齿分扭传动级与人字齿并车传动级构成的分扭 并车纯扭转动力学模型;通过高斯消元去除状态方程中的冗余变量,解决了系统动力学方程的奇异性并采用 4 阶 Runge-Kutta 法数值求解;分析了无量纲时间下不同齿型构成的 2 级传动动载特性,采用模态分析法,确定该系统的固有频率与固有振型,并结合三维瀑布图分析激振频率对系统共振特性的影响。研究结果表明:该齿轮传动系统由人字齿构成的并车传动级动力学特性优于由斜齿构成的分扭传动级;系统啮合位移与动态啮合力响应瀑布图表明,在该系统激振频率为 1820 Hz 时,系统出现超谐波共振。  相似文献   

17.
针对齿轮副非线性振动问题展开研究,综合分析了啮合冲击激励、时变啮合刚度和误差激励对齿轮系统振动的影响。根据扭转啮合刚度定义,分别建立了无齿面缺陷和有齿面缺陷的齿轮三维接触仿真分析模型。计算了两种运行状态下,不同接触位置上的扭转啮合刚度。在进行齿轮副非线性振动的分析时,综合考虑了啮合冲击激励、时变啮合刚度和误差激励等非线性因素,建立了齿轮副非线性动力学模型,采用变步长四阶Runge-Kutta数值积分方法求解了系统的动态响应。  相似文献   

18.
考虑齿面接触温升的影响,针对高速渐开线直齿轮动力学特性和润滑性能问题,建立摩擦动力学模型剖析齿轮润滑特性与动力学行为的耦合关系以及揭示油膜润滑机理。首先,建立含时变啮合刚度、齿侧间隙、传动误差的多自由度直齿轮弯-扭耦合动力学模型;其次,建立一维线接触瞬态混合热弹流润滑模型,通过整合得到含热效应的直齿轮摩擦动力学模型,利用龙格库塔法与多重网格法的联合迭代求解耦合系统的控制方程;最后,通过静态工况和动态工况数值计算结果的对比、摩擦动力学特性的分析以及温升的对比,证明了建立摩擦动力学耦合模型的必要性,为高速齿轮动态特性和润滑性能的改善提供分析方法。  相似文献   

19.
含侧隙齿轮副的动载荷分析   总被引:1,自引:0,他引:1  
王玉新  柳杨 《机械强度》2003,25(4):373-377
以振动理论为基础,提出一种考虑齿轮拍击振动的齿轮动载荷的数值计算方法。建立计算动载荷的齿轮冲击模型,在模型中考虑了齿轮正、反冲击时实际的啮合刚度,并给出啮合柔度的计算方法。分析在考虑静态传递误差、啮合刚度、侧隙、摩擦力及外部扭矩变化等多种激励时,作用在轮齿上的动态载荷以及整个齿轮上的综合动态载荷的计算公式。最后通过实例分析作用在轮齿上的动态载荷、综合动态载荷变化规律以及相关激励参数对动态载荷的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号