首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Datong Basin is one of the Cenozoic faulted basins in Northern China’s Shanxi province, where groundwater is the major source of water supply. The results of hydrochemical investigation show that along the groundwater flow path, from the margins to the lower-lying central parts of the basin, groundwater generally shows increases in concentrations of TDS, HCO3 ?, SO4 2?, Cl?, Na+ and Mg2+ (except for Ca2+ content). Along the basin margin, groundwater is dominantly of Ca–HCO3 type; however, in the central parts of the basin it becomes more saline with Na–HCO3-dominant or mixed-ion type. The medium-deep groundwater has chemical compositions similar to those of shallow groundwater, except for the local area affected by human activity. From the mountain front to the basin area, shallow groundwater concentrations of major ions increase and are commonly higher than those in medium-deep aquifers, due to intense evapotranspiration and anthropogenic contamination. Hydrolysis of aluminosilicate and silicate minerals, cation exchange and evaporation are prevailing geochemical processes occurring in the aquifers at Datong Basin. The isotopic compositions indicate that meteoric water is the main source of groundwater recharge. Evaporation is the major way of discharge of shallow groundwater. The groundwater in medium-deep aquifers may be related to regional recharges of rainwater by infiltrating along the mountain front faults, and of groundwater permeating laterally from bedrocks of the mountain range. However, in areas of groundwater depression cones, groundwater in the deep confined aquifers may be recharged by groundwater from the upper unconfined aquifer through aquitards.  相似文献   

2.
Continual expansion of population density, urbanization, agriculture, and industry in most parts of the world has increased the generation of pollution, which contributes to the deterioration of surface water quality. This causes the dependence on groundwater sources for their daily needs to accumulate day by day, which raises concerns about their quality and hydrogeochemistry. This study was carried out to increase understanding of the geological setup and assess the groundwater hydrogeochemical characteristics of the multilayered aquifers in Lower Kelantan Basin. Based on lithological data correlation of exploration wells, the study area can be divided into three main aquifers: shallow, intermediate and deep aquifers. From these three aquifers, 101 groundwater samples were collected and analyzed for various parameters. The results showed that pH values in the shallow, intermediate and deep aquifers were generally acidic to slightly alkaline. The sequences of major cations and anions were Na+ > Ca2+ > Mg2+ > K+ and HCO3? > Cl? > SO42? > CO32?, respectively. In the intermediate aquifer, the influence of ancient seawater was the primary factor that contributed to the elevated values of electrical conductivity (EC), Cl? and total dissolved solids (TDS). The main facies in the shallow aquifer were Ca–HCO3 and Na–HCO3 water types. The water types were dominated by Na–Cl and Na–HCO3 in the intermediate aquifer and by Na–HCO3 in the deep aquifer. The Gibbs diagram reveals that the majority of groundwater samples belonged to the deep aquifer and fell in the rock dominance zone. Shallow aquifer samples mostly fell in the rainfall zone, suggesting that this aquifer is affected by anthropogenic activities. In contrast, the results suggest that the deep aquifer is heavily influenced by natural processes.  相似文献   

3.
Study on geochemistry of groundwater occurring at different depths is rarely attempted due to inherent difficulties in sample isolation and lack of significant species variations. Three-dimensional (spatial, temporal and depth-wise) evaluation of water chemistry variations would give holistic picture of aquatic chemistry. In order to fill the knowledge gap the vertical hydrogeochemistry of Penna-Chitravati inter-stream sub-basin is studied.Water samples are segregated into different groups based on water levels of source wells. The group samples pertaining to granite terrain (A to C) does not show much variation for tested parameters as most of the samples fall within 20m water level. In shale aquifers groundwater is progressively less ionized as depth to levels increases (Group D to G). Reduction of EC and Na-Cl along with falling water levels indicates deeper aquifers are free from contamination. Gradual decrease in HCO 3 - with depth substantiates that deeper aquifers are getting less fresh water due to lack of inter connectivity in shale formations. Sodium in groundwater of both the granite and shale aquifers is contributed by weathering of silicate rocks as the Na+/Cl- molar ratio is >1 in many samples. Majority of the samples in both the geological terrains have Ca2+/Mg2+ ratio between 1 to < 2 indicating dolomite dissolution is responsible for Ca2+-Mg2+ contribution. The chemistry of tested water indicate aquifer matrix is responsible for chemical make-up of pore water which was obliterated due to extraneous sources like anthropogenic contamination as Na+, Cl-, NO 3 - and SO 4 2- /HCO 3 - is high in many samples belonging to shallow aquifers. Thermodynamic action in deep aquifers could be responsible for dissimilar water chemistry in aquifers belonging to same geological domain.  相似文献   

4.
The alluvial aquifer of the Alto Guadalquivir River is one of the most important shallow aquifers in Jaén, Spain. It is located in the central-eastern part of the province, and its groundwater resources are used mainly for crop irrigation in an agriculture-dominated area. Hydrochemical and water-quality data obtained through a 2-year sampling (2004–2006) and analysis program indicate that nitrate pollution is a serious problem affecting groundwater due to the use of nitrogen (N)-fertilizers in agriculture. During the study, 231 water samples were collected from wells and springs to determine water chemistry and the extent of nitrate pollution. The concentration of nitrate in groundwater ranged from 1.25 to 320.88 mg/l. Considerable seasonal fluctuations in groundwater quality were observed as a consequence of agricultural practices and other factors such as annual rainfall distribution and the Guadalquivir River flow regime. The chemical composition of the water is not only influenced by agricultural practices, but also by interaction with the alluvial sediments. The dissolution of evaporites accounts for part of the Na+, K+, Cl, SO4 2−, Mg2+, and Ca2+, but other processes, such as calcite precipitation and dedolomitization, also contribute to groundwater chemistry.  相似文献   

5.
An investigation was conducted in Beijing to identify the groundwater evolution and recharge in the quaternary aquifers. Water samples were collected from precipitation, rivers, wells, and springs for hydrochemical and isotopic measurements. The recharge and the origin of groundwater and its residence time were further studied. The groundwater in the upper aquifer is characterized by Ca-Mg-HCO3 type in the upstream area and Na-HCO3 type in the downstream area of the groundwater flow field. The groundwater in the lower aquifer is mainly characterized by Ca-Mg-HCO3 type in the upstream area and Ca-Na-Mg-HCO3 and Na-Ca-Mg-HCO3 type in the downstream area. The δD and δ18O in precipitation are linearly correlated, which is similar to WMWL. The δD and δ18O values of river, well and spring water are within the same ranges as those found in the alluvial fan zone, and lay slightly above or below LMWL. The δD and δ18O values have a decreasing trend generally following the precipitation → surface water → shallow groundwater → spring water → deep groundwater direction. There is evidence of enrichment of heavy isotopes in groundwater due to evaporation. Tritium values of unconfined groundwater give evidence for ongoing recharge in modern times with mean residence times <50 a. It shows a clear renewal evolution along the groundwater flow paths and represents modern recharge locally from precipitation and surface water to the shallow aquifers (<150 m). In contrast, according to 14C ages in the confined aquifers and residence time of groundwater flow lines, the deep groundwater is approximately or older than 10 ka, and was recharged during a period when the climate was wetter and colder mainly from the piedmont surrounding the plain. The groundwater exploitation is considered to be “mined unsustainably” because more water is withdrawn than it is replenished.  相似文献   

6.
 Spain is a relatively large European country (ca. 500,000 km2) with extensive semiarid areas in which there exists a large number of good aquifers. In some areas, these aquifers are intensively developed and are the most important sources of fresh water. Nevertheless, groundwater development and protection has rarely been duly considered by the Spanish Water Administration, despite the pressure to remedy this situation by various groups of experts, some of them members of the Water Administration. The Spanish Committee of the International Association of Hydrogeologists (IAH) has been very active during the last decade in promoting activities to spread groundwater science, technology, and management in Spain and outside, mostly in Latin America, and in trying to orient water policy toward issues of groundwater. These activities include mainly the organization of technical and scientific meetings on current topics such as groundwater in the new Water Act, overexploitation, groundwater in water-resources planning, groundwater pollution, natural-recharge estimation and others. The impact of these activities on the recent water policy of Spain seems significant, and the experience gained may be applicable to other countries. Received, February 1997 · Revised, July 1997 · Accepted, July 1997  相似文献   

7.
 The total amount of groundwater resources in the middle and upper Odra River basin is 5200×103 m3/d, or about 7.7% of the disposable groundwater resources of Poland. The average modulus of groundwater resources is about 1.4 L/s/km2. Of the 180 'Major Groundwater Basins' (MGWB) in Poland, 43 are partly or totally located within the study area. The MGWB in southwestern Poland have an average modulus of groundwater resources about 2.28 L/s/km2 and thus have abundant water resources in comparison to MGWB from other parts of the country. Several types of mineral waters occur in the middle and upper Odra River basin. These waters are concentrated especially in the Sudety Mountains. Carbon-dioxide waters, with yields of 414 m3/h, are the most widespread of Sudetic mineral waters. The fresh waters of the crystalline basement have a low mineralization, commonly less than 100 mg/L; they are a HCO3–Ca–Mg or SO4–Ca–Mg type of water. Various hydrochemical compositions characterize the groundwater in sedimentary rocks. The shallow aquifers are under risk of atmospheric pollution and anthropogenic effects. To prevent the degradation of groundwater resources in the middle and upper Odra River basin, Critical Protection Areas have been designated within the MGWB. Received, January 1995 Revised, May 1996, August 1997 Accepted, August 1997  相似文献   

8.
Karst groundwater is a vital resource for drinking, living and irrigation purposes in karst agricultural areas of the world. Due to the vulnerability of karst aquifers, surface pollutants are easily transferred to the subsurface and make karst groundwater be deteriorated, thereby restricting the rational exploitation of karst groundwater resource. In view of this, 49 karst groundwater samples were collected from spring (SW) and underground river (URW) sites in the suburban area of Chongqing City and analyzed for various hydrochemical components. Particularly, the karst groundwater quality was comprehensively uncovered by combining characteristics of hydrogeochemical evolution and health risks caused by nitrate and fluoride. The results revealed that the karst groundwater was slightly alkaline in nature and the water types were mainly characterized by Ca-HCO3 accounting for 93.88% of the total samples due to the heavy dissolution of carbonate rock. The relatively high concentrations of Na+, SO42? and NO3? up to 271.88 mg/L, 277.94 mg/L and 56.94 mg/L were over the corresponding maximum acceptable limits for drinking water, which can be predominately attributed to the emissions of industrial park, dissolution of gypsum and pyrite and excessive application of chemical fertilizers. Although agricultural activities were stopped and chemical fertilizers were no longer applied during the sampling period, long-term application of fertilizers have a persistent adverse effect on the karst groundwater NO3?. The pollution index of the karst groundwater (PIG) revealed that the low pollution and potential pollution zones were noticed in the northwestern parts of the study area. With respect of the SW, all the total hazard index (HI) values were below 1 suggesting no significant health risk. On the contrary, HI values of 0.11–1.16 for adults, 0.15–1.61 for children and 0.17–1.83 for infants in the URW indicated significant noncarcinogenic health risks. Particularly, infants and children were more vulnerable to karst groundwater NO3? than adults. Furthermore, the noncarcinogenic health risks of karst groundwater can be mainly attributed to NO3?, confirmed by the higher contribution ratio (66.55%) to the HI values. Therefore, special and targeted measures need to be taken to decrease the NO3? concentration in agricultural area.  相似文献   

9.
Over the past decades, the Gujarat state of India experienced intensive agricultural and industrial activities, fertilizer consumption and abstraction of groundwater, which in turn has degraded the ground water quality. Protection of aquifers from nitrate pollution is a matter of prime concern for the planners and decision-makers. The present study assessed the spatial and temporal variation of groundwater nitrate levels in areas with different land use/land cover activities for both pre- and post-monsoon period. The pre-monsoon nitrate level (1.6–630.7 mg/L) in groundwater was observed to be higher as compared to the post-monsoon level (2.7–131.7 mg/L), possibly due to insufficient recharge and evaporation induced enrichment of agrichemical salts in groundwater. High HCO3 ? (200–1,000 mg/L) as well as SO4 2?/Cl? (0.111–0.992) in post-monsoon period provides a favourable environment for denitrification, and lower the NO3 levels during the post-monsoon period. The K vs NO3 scatter plot suggests a common source of these ions when the concentration is <5 mg/L, the relationships between different pollutants and nitrate also suggest that fertilizers and other sources, such as, animal waste, crop residue, septic tanks and effluents from different food processing units present in the area can be attributed to higher nitrate levels in the groundwater. Appropriate agronomic practices such as application of fertilizers based on calibrated soil tests and proper irrigation with respect to crop can minimize the requirement for inorganic fertilizers, which can bring down the cost of cultivation considerably, and also protect groundwater from further degradation.  相似文献   

10.
The water framework directive (WFD) is applied within the Guadalhorce river basin, a Western Mediterranean basin in the Málaga province (South Spain). Criteria defining different surface and groundwater bodies are described. The basic hydrographic network is constituted of low-mountain and low-altitude Mediterranean mineralized rivers. Heavily modified surface water bodies correspond (1) to areas where dams regulate the main watercourses, (2) to areas downstream of reservoirs, where river flow is reduced, and (3) to the coastal sector of the river where artificial channelling has caused morphological variations. Groundwater bodies are related to carbonate and porous aquifers and, locally, to aquifers influenced by dissolution of evaporites. The main impacts to water bodies are irrigated lands and livestock farming. There are also point sources of pollution, such as wastewater, landfills, golf courses, industrial zones, quarries and petrol stations. In addition, groundwater is frequently pumped for human supply and irrigation. Qualitative status of groundwater bodies was done by chemical analysis of samples from a monitoring network and the quantitative status by examining variations in piezometric levels. Both revealed the existence of water bodies at risk of not meeting the environmental objectives of the WFD. The main indicators of pollution are nitrates related to agricultural activities, and total organic carbon (TOC), PO43− and NH4+ in relation to wastewater.  相似文献   

11.
Greece is dependent on groundwater resources for its water supply. The main aquifers are within carbonate rocks (karstic aquifers) and coarse grained Neogene and Quaternary deposits (porous aquifers). The use of groundwater resources has become particularly intensive in coastal areas during the last decades with the intense urbanization, tourist development and irrigated land expansion. Sources of groundwater pollution are the seawater intrusion due to over-exploitation of coastal aquifers, the fertilizers from agricultural activities and the disposal of untreated wastewater in torrents or in old pumping wells. In the last decades the total abstractions from coastal aquifers exceed the natural recharge; so the aquifer systems are not used safely. Over-exploitation causes a negative water balance, triggering seawater intrusion. Seawater intrusion phenomena are recorded in coastal aquifer systems. Nitrate pollution is the second major source of groundwater degradation in many areas in Greece. The high levels of nitrate are probably the result of over-fertilization and the lack of sewage systems in some urban areas.  相似文献   

12.
Concentration and isotope ratios (δ34SSO4 and δ18OSO4) of dissolved sulfate of groundwater were analyzed in a very large anaerobic aquifer system under the Lower Central Plain (LCP) (25,000 km2) in Thailand. Groundwater samples were collected in two different kinds of aquifers; type 1 with a saline water contribution and type 2 lateritic aquifers with no saline water contribution. Two different isotopic compositional trends were observed: in type 1 aquifers sulfate isotope ratios range from low values (+2.2‰ for δ34SSO4 and +8.0‰ for δ18OSO4) to high values (+49.9‰ for δ34SSO4 and +17.9‰ for δ18OSO4); in type 2 aquifers sulfate isotope ratios range from low values (−0.1‰ for δ34SSO4 and +12.2‰ for δ18OSO4) to high δ18OSO4 ratios (+18.4‰) but with low δ34SSO4 ratios (<+12.9‰). Isotopic comparison with possible source materials and theoretical geochemical models suggests that the sulfate isotope variation for type 1 aquifer groundwater can be explained by two main processes. One is the contribution of remnant seawater, which has experienced dissimilatory sulfate reduction in the marine clay, into recharge water of freshwater origin. This process accounts for the high salinity groundwater. The other process, explaining for the modest salinity groundwater, is the bacterial sulfate reduction of the mixture water between high salinity water and fresh groundwater. Isotopic variation of type 2 aquifer groundwater may also be explained by bacterial sulfate reduction, with slower reduction rate than that of the groundwater with saline water effect. The origin of groundwater sulfate with low δ34SSO4 but high δ18OSO4 is recognized as an important topic to be examined in a future investigation.  相似文献   

13.
 Groundwater in alluvial aquifers of the Wakatipu and Wanaka basins, Central Otago, New Zealand, has a composition expressed in equivalent units of Ca2+≫Mg2+≅Na+>K+ for cations, and HCO3 ≫SO4 2->NO3 ≅Cl for anions. Ca2+ and HCO3 occur on a 1 : 1 equivalent basis and account for >80% of the ions in solution. However, some groundwater has increased proportions of Na+ and SO4 2-, reflecting a different source for this water. The rock material of the alluvial aquifers of both basins is derived from the erosion and weathering of metamorphic Otago Schist (grey and green schists). Calcite is an accessory mineral in both the grey and green schists at <5% of the rock. Geological mapping of both basins indicates that dissolution of calcite from the schist is the only likely mechanism for producing groundwater with such a constant composition dominated by Ca2+ and HCO3 on a 1 : 1 equivalent basis. Groundwater with higher proportions of Na+ and SO4 2- occurs near areas where the schist crops out at the surface, and this groundwater represents deeper and possibly older water derived from basement fluids. Anomalously high K+ in the Wakatipu basin and high NO3 concentrations in the Wanaka basin cannot be accounted for by interaction with basement lithologies, and these concentrations probably represent the influence of anthropogenic sources on groundwater composition. Received, June 1996 Revised, March 1997, July 1997 Accepted, July 1997  相似文献   

14.
The degradation of groundwater quality, which has been noted in the recent years, is closely connected to the intensification of agriculture, the unreasonable use of chemical fertilizers and the excess consumption of large volumes of irrigation water. In the hilly region of central Thessaly in Greece, which suffers the consequences of intense agricultural use, a hydrogeological study is carried out, taking groundwater samples from springs and boreholes in the Neogene aquifers. The aim of this study is the investigation of irrigation management, water quality and suitability for various uses (water supply, irrigation), the degradation degree and the spatial distribution of pollutants using GIS. The following hydrochemical types prevail in the groundwater of the study area: Ca–Mg–HCO3, Mg–Ca–Na–HCO3 and Na–HCO3. In the above shallow aquifers, especially high values of NO3 (31.7–299.0), NH4 + (0.12–1.11), NO2 (0.018–0.109), PO4 3− (0.07–0.55), SO4 2− (47.5–146.5) and Cl (24.8–146.5) are found, particularly near inhabited areas (values are in mg L−1). The water of shallow aquifers is considered unsuitable for human use due to their high polluting load, while the water of the deeper aquifers is suitable for human consumption. Regarding water suitability for irrigation, the evaluation of SAR (0.153–7.397) and EC (481–1,680 μS cm−1) resulted in classification category ‘C3S1’, indicating high salinity and low sodium water which can be used for irrigation in most soils and crops with little to medium danger of development of exchangeable sodium and salinity. The statistical data analysis, the factor analysis and the GIS application have brought out the vulnerable-problematic zones in chemical compounds of nitrogen and phosphates. The groundwater quality degradation is localized and related exclusively to human activities. Based on 2005 and 2008 estimates, the annual safe yield of the region’s aquifers were nearly 41.95 MCM. However, the existing situation is that 6.37 MCM of water is over extracted from these aquifers.  相似文献   

15.
Detailed geochemical analysis of groundwater beneath 1223 km2 area in southern Bengal Basin along with statistical analysis on the chemical data was attempted, to develop a better understanding of the geochemical processes that control the groundwater evolution in the deltaic aquifer of the region. Groundwater is categorized into three types: ‘excellent’, ‘good’ and ‘poor’ and seven hydrochemical facies are assigned to three broad types: ‘fresh’, ‘mixed’ and ‘brackish’ waters. The ‘fresh’ water type dominated with sodium indicates active flushing of the aquifer, whereas chloride-rich ‘brackish’ groundwater represents freshening of modified connate water. The ‘mixed’ type groundwater has possibly evolved due to hydraulic mixing of ‘fresh’ and ‘brackish’ waters. Enrichment of major ions in groundwater is due to weathering of feldspathic and ferro-magnesian minerals by percolating water. The groundwater of Rajarhat New Town (RNT) and adjacent areas in the north and southeast is contaminated with arsenic. Current-pumping may induce more arsenic to flow into the aquifers of RNT and Kolkata cities. Future large-scale pumping of groundwater beneath RNT can modify the hydrological system, which may transport arsenic and low quality water from adjacent aquifers to presently unpolluted aquifer.  相似文献   

16.
Stable isotopes (δ18O, δ2H and 13C) and radioactivity (3H, 14C) have been used in conjunction with chemical data to evaluate the processes generating the chemical composition, reconstruct the origin of the water and groundwater residence time. The Aleppo basin is comprised of two main limestone aquifers: the first one is unconfined of Paleogene age and the second is confined of Upper Cretaceous age. The chemical data indicate that the dissolution of minerals and evaporation are the main processes controlling groundwater mineralization. The groundwater from the two aquifers is characterized by distinctive stable isotope signatures. This difference in water isotopes is interpreted in terms of difference origin and recharge period. Fresh and brackish shallow groundwater were mostly recharged during the Holocene period. The presence of 3H in several groundwater samples of this aquifer gives evidence that groundwater recharge is going on. Brackish water of the deep confined aquifer has depleted stable isotope composition and very low 14C activity that indicates recharge during the late Pleistocene cold period.  相似文献   

17.
长江河口地区地下水咸、淡水界面的动态变化研究   总被引:1,自引:0,他引:1  
本文对长江河口地区1960~1985年间78口钻井中的各层承压水进行了245个水化学样品测试,分析内容包括K+、Na+、Ca2+、Mg2+、NH4+、Al3+、Cl-、HCO3-、CO32-、SO42-离子含量以及酸碱性、温度等项目。其中第I层有样品24个;II层有63个;III层有53个;IV层有70个;V层有35个。测试时采用平行双样进行精度控制,水质分析的结果,按阴阳离子毫克当量总和的平衡关系进行检查,超出允许误差及时进行复检。
为了研究各承压含水层咸、淡水界面分布的变化,我们将矿化度作为水质指标,并利用人工神经网络技术进行了计算机模拟。结果表明,本区第四纪地层中各含水层水质的时空分布格局主要受第四纪海平面波动控制;IV、V含水层中的微咸水、咸水的分布可能受上层咸水通过越流污染下层淡水所致。对II、III含水层在二十世纪六十年代和八十年代两阶段水质分布的分析发现,含水层内淡水区在上海市区有向东南和西北方向明显扩展的趋势。造成这种现象的主要原因在于二十世纪七十和八十年代,上海市区地下水开采量逐年压缩,并开展了人工回灌(均为淡水),从而阻止了由于二十世纪六十年代市区过量抽取地下水而引起的地面沉降等问题。  相似文献   

18.
The groundwaters from Zhongxiang City, Hubei Province of central China, have high fluoride concentration up to 3.67 mg/L, and cases of dental fluorosis have been found in this region. To delineate the nature and extent of high fluoride groundwaters and to assess the major geochemical factors controlling the fluoride enrichment in groundwater, 14 groundwater samples and 5 Quaternary sediment samples were collected and their chemistry were determined in this study. Some water samples from fissured hard rock aquifers and Quaternary aquifers have high fluoride concentrations, whereas all karst water samples contain fluoride less than 1.5 mg/L due to their high Ca/Na ratios. For the high fluoride groundwaters in the fissured hard rocks, high HCO3 concentration and alkaline condition favor dissolution of fluorite and anion exchange between OH in groundwater and exchangeable F in some fluoride-bearing minerals. For fluoride enrichment in groundwaters of Quaternary aquifers, high contents of fluoride in the aquifer sediments and evapotranspiration are important controls.  相似文献   

19.
《Applied Geochemistry》2004,19(6):937-946
Analysis of stable isotopes and major ions in groundwater and surface waters in Belize, Central America was carried out to identify processes that may affect drinking water quality. Belize has a subtropical rainforest/savannah climate with a varied landscape composed predominantly of carbonate rocks and clastic sediments. Stable oxygen (δ18O) and hydrogen (δD) isotope ratios for surface and groundwater have a similar range and show high d-excess (10–40.8‰). The high d-excess in water samples suggest secondary continental vapor flux mixing with incoming vapor from the Caribbean Sea. Model calculations indicate that moisture derived from continental evaporation contributes 13% to overhead vapor load. In surface and groundwater, concentrations of dissolved inorganic carbon (DIC) ranged from 5.4 to 112.9 mg C/l and δ13CDIC ranged from −7.4 to −17.4‰. SO42, Ca2+ and Mg2+ in the water samples ranged from 2–163, 2–6593 and 2–90 mg/l, respectively. The DIC and δ13CDIC indicate both open and closed system carbonate evolution. Combined δ13CDIC and Ca2+, Mg2+, and SO42− suggest additional groundwater evolution by gypsum dissolution and calcite precipitation. The high SO42−content of some water samples indicates regional geologic control on water quality. Similarity in the range of δ18O, δD and δ13CDIC for surface waters and groundwater used for drinking water supply is probably due to high hydraulic conductivities of the karstic aquifers. The results of this study indicate rapid recharge of groundwater aquifers, groundwater influence on surface water chemistry and the potential of surface water to impact groundwater quality and vise versa.  相似文献   

20.
Groundwater flow fields in aquifers are often determined by water level data measured in monitoring wells. The flow field can be further refined by mass balance simulations, especially when groundwater level data is limited. The mass balance simulation is based on the principle of mass conservation and relies on water quality data in the same aquifer. The approach is applied to the Luohe aquifer in the Binchang area, China. The water-rock interactions and the hydrogeochemical evolution were studied along four typical flow paths. The study indicates that groundwater in the Luohe formation flows from the southern border to the interior of the Ordos Basin. The southern border, approximately 1,400 km2, is a recharge zone, where the Luohe formation outcrops. The total dissolved solids of the groundwater in the southern boarder are less than 1 g/l, and the hydrochemistry type is HCO3–Na. This new finding refines the flow field of the water-bearing formation, and an additional 1,400 km2 is included in the water resource planning of the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号