首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为探究将流向变换技术应用于低浓度一氧化碳处理的可行性,自制了一种整体式催化剂并将其应用于小型流向变换催化燃烧装置.采用预处理后的堇青石蜂窝陶瓷为支撑体,改性y-Al2 O3为催化剂载体,添加Ce、La等轻稀土元素作为助剂,研究制备出性能优良的贵金属Pd整体式催化剂.研究中考察了催化剂预热温度对催化剂效率的影响及反应系统换向周期、空速等条件对反应系统床层温度的影响.研究结果表明:当催化剂预热温度为200℃、换向周期为8 min、空速为8 000 h-1一氧化碳初始体积分数为0.1%时,一氧化碳转化率最高可达90%.  相似文献   

2.
以凹凸棒石黏土为载体采用浸渍还原-气相沉积负载Pd和AlCl3制备了Pd-AlCl3-凹土加氢催化剂,并用于苯酚选择性加氢制环己酮。采用XRD、EDX和SEM对催化剂进行了表征,考察了AlCl3、Pd含量以及反应条件对苯酚加氢制环己酮的影响。结果表明:气相沉积法可将AlCl3均匀分散到凹凸棒石晶体表面并提高其固载量,AlCl3的引入和Pd含量的增加可增加催化剂的活性,提高产物环己酮选择性。适宜的反应条件为Pd含量5%,反应温度80℃,反应时间3h,此时催化剂活性最好,苯酚转化率为99.99%,环己酮选择性可达到100%。  相似文献   

3.
以酸性SiO_2为载体,Pd(NO3)2为活性金属前驱体,制备Pd质量分数为0.5%的Pd/SiO_2催化剂,考察其对于苯酚加氢制备环己酮的催化性能.实验结果表明:Pd/SiO_2催化剂在反应温度135℃,反应压力1.0 MPa,反应时间3.5 h的条件下,苯酚转化率可达到71.62%,环己酮的选择性可达到90.77%.良好的催化性能源于Pd/SiO_2较大的比表面积、高度分散的Pd以及适宜的酸碱性.  相似文献   

4.
采用悬浮液涂层法对结构化堇青石载体进行修饰,然后采用浸渍法制备Pd/γ-Al2O3-堇青石结构化催化剂.考察了Pd负载量及焙烧温度对催化剂活性与选择性的影响,结果表明:0.5%是适宜的Pd负载量,673K和773K是适宜的催化剂焙烧温度.通过TEM、BET、XPS等手段对催化剂进行表征,结果发现负载量增加时催化剂分散度降低,适当提高催化剂焙烧温度能增加金属Pd的分散度,但XPS表征显示催化剂表面Pd原子分数却呈下降趋势.从Pd3d5/2结合能和半峰宽FWHM数据可知,高温焙烧可能产生两种形态的PdO,在673K和773K焙烧时生成了较多的有利于间二硝基苯催化加氢的PdO,因此其活性与选择性最佳.  相似文献   

5.
以共沉淀法制备PdMgAl类水滑石为催化剂前体制备PdO-MgO-Al2O3催化剂,用固定床管式反应器测试催化剂对丙酮一步法制备MIBK的催化活性,研究反应温度、氢酮比、进料液空速及催化剂组成对该反应的影响.在常压下,反应温度为180℃,氢酮物质的量比为1.5,液空速为1.20 h^-1,选取不同组成的催化剂进行催化性能测试.实验结果表明:当n(Mg)∶n(Al)=3∶1,Pd质量分数为0.2%时,丙酮的转化率为82.87%,MIBK的选择性为53.56%,收率为44.39%.  相似文献   

6.
以凹凸棒石黏土为载体,采用浸渍还原和回流吸附负载Pd和AlCl3制备Pd-AlCl3-PAL加氢催化剂,并用于苯酚选择性加氢制环己酮。采用XRD、EDX、TEM对催化剂进行了表征,考察AlCl3、Pd含量以及反应时间和温度对苯酚加氢制环己酮的影响。结果表明:AlCl3的引入和Pd含量的增加可增加催化剂的活性,提高产物环己酮选择性。反应温度的提高可能导致溶剂挥发带走苯酚,其苯酚转化率下降。反应时间的延长并没有显著提高苯酚转化率,反而产生环己醇使环己酮选择性下降。适宜的反应条件为Pd含量5%,反应温度50℃,反应时间1.5h,此时催化剂活性最好,苯酚转化率为98.45%,环己酮选择性可达到94.77%。  相似文献   

7.
研究以ST-85为分散剂的超微粉氧化铝浆料体系中,分散剂、单体、引发剂、催化剂的含量和室内温度,对注凝成型法制备Al2O3陶瓷素坯固化时间的影响.研究结果表明:Al2O3陶瓷浆料中,固相质量分数为68.0%、分散剂质量分数为0.5%、单体质量分数为2.5%、引发剂质量分数为0.02%~0.03%、催化剂质量分数为0.03%~0.04%、室内温度为16~20℃时,浆料的固化时间可以控制在20~40 min内.  相似文献   

8.
为了得到活性高、成本低的CH4催化燃烧催化剂,制备了一种Pt、Pd负载在硅铝纤维棉载体上的催化剂,考察了CH4催化燃烧的活性及抗老化性能,研究了载体的组成、预处理方法及贵金属负载量对催化剂活性的影响.结果表明:利用淄博华岩耐火纤维公司生产的高铝型纤维棉作为载体制备的催化剂的活性最好;载体预处理方法影响催化剂活性,其中用质量分数为1%的盐酸常温浸泡30 min得到的纤维载体最佳;当负载的Pt的质量分数为1.5%,负载的Pd的质量分数为2%时,催化剂活性最好,1.5%Pt/Z3催化剂的CH4完全转化温度为600℃,2%Pd/Z3催化剂的CH4完全转化温度为450℃;2%Pd/Z3催化剂在800℃经过100 h老化后,其t50仅提高了50℃,该催化剂具有良好的抗老化性能.  相似文献   

9.
以邻硝基苯甲醚为原料,Pd/C作催化剂,研究了无溶剂液相催化加氢合成邻氨基苯甲醚的工艺.确定的适宜工艺条件为:氢压0.8MPa,反应温度80℃,搅拌转速800r/min,钯(干基)质量分数为5%的Pd/C催化剂用量为质量分数0.5%.在该条件下,产品收率≥94.50%(以邻硝基苯甲醚为计算基准),邻氨基苯甲醚产品质量分数≥99.70%,且催化剂可重复套用10次.  相似文献   

10.
采用悬浮液涂层法对结构化堇青石载体进行修饰,然后采用浸渍法制备Pd/γ-Al2O3-堇青石结构化催化剂.考察了Pd负载量及焙烧温度对催化剂活性与选择性的影响,结果表明:0.5%是适宜的Pd负载量,673K和773K是适宜的催化剂焙烧温度.通过TEM、BET、XPS等手段对催化剂进行表征,结果发现负载量增加时催化剂分散度降低,适当提高催化剂焙烧温度能增加金属Pd的分散度,但XPS表征显示催化剂表面Pd原子分数却呈下降趋势.从Pd3d5/2结合能和半峰宽FWHM数据可知,高温焙烧可能产生两种形态的PdO,在673K和773K焙烧时生成了较多的有利于间二硝基苯催化加氢的PdO,因此其活性与选择性最佳.  相似文献   

11.
采用浸渍法制备了系列负载型Ru-Ir双金属催化剂,用于催化对氯硝基苯的选择加氢。系统考察了不同制备方法和制备条件对催化剂性能的影响。实验结果表明,以-γA l2O3为载体,用异丙醇共浸渍钌和铱,氢压为4.0 MPa,温度180℃,用氢气还原18 h制备的双金属Ru-Ir催化剂(nRu∶nIr=4∶1,担载量为2.0%)具有较好的催化性能。该催化剂用于对氯硝基苯加氢还原反应中,在反应温度60℃,氢气压力为2.0 MPa,底物与催化剂的摩尔比为1 000∶1条件下,反应1 h,转化率可达90.4%,目标产物对氯苯胺的选择性达99.5%。  相似文献   

12.
采用溶胶—凝胶法及共浸渍法制备了TiO2-SiO2-Al2O3复合载体,并用共浸渍法制备负载型MoP/TiO2-SiO2-Al2O3催化剂。XRD结果表明,TiO2的晶相衍射峰呈锐钛矿,SiO2则大多以无定型态分散于γ-Al2O3晶体表面。通过原位还原技术对催化剂进行还原处理,在连续固定床反应器上进行活性评价,结果表明,钛硅铝物质的量比对催化剂的活性有很大的影响,在温度为360℃,压力为3MPa,液时空速为1h-1,氢油体积比为500∶1的反应条件下,n(Ti)∶n(Si)∶n(Al)为1∶1∶4,Mo负载量为20%时,MoP/TiO2-SiO2-Al2O3催化剂的加氢脱芳活性最高,达到65.6%。并且TiO2-SiO2-Al2O3三元复合载体比传统的γ-Al2O3和SiO2-Al2O3二元复合载体的活性分别提高了19.6%和13.6%。  相似文献   

13.
采用酸沉淀法制备大孔γ-Al2O3为载体,并用浸渍法制备Ni2P(25%)/γ-A12O3催化剂。BET、XRD、压汞法的分析结果显示:合成大孔γ-Al2O3载体晶型良好,且具有适宜比表面积和孔结构。催化剂经原位还原处理后,以柴油为原料在连续固定反应装置上,考察了催化剂的制备条件及反应条件对催化剂加氢脱硫活性的影响。结果表明:当载体合成温度为80℃,反应pH为8,反应条件为温度360℃、压力4.0MPa、空速1.0h-1、氢烃体积比500∶1时,催化剂的加氢脱硫活性最好,柴油的脱硫率可达98.2%。  相似文献   

14.
低温等离子体协同催化技术降解甲苯的研究   总被引:1,自引:0,他引:1  
采用低温等离子体协同催化技术降解甲苯废气,以降解率、输入反应器能量密度、能量效率及臭氧消解效果作为评级标准,对不同催化剂负载量及不同催化剂性能进行比较试验.结果发现:以γ-Al2O3为载体,催化剂负载量(质量分数)为10%MnOx时体现出的催化活性最高;纳米TiO2/γ-Al2O3与MnOx/γ-Al2O3均表现出较高的甲苯的降解率及能量效率,但MnOx/γ-Al2O3催化剂对控制反应过程中副产物的产量更为有效.  相似文献   

15.
Conventional Pd/γ-Al2O3 methane sensors are easily poisoned in a sulfur-containing atmosphere,with a subsequent decrease in sensitivity and the working life of methane sensors.We mainly investigated the effect of nanotechnology and a cerium co-catalyst on the stability and anti-sulfur performance of methane sensors.In our experiment,an anti-sulfur methane sensor was prepared by immersing cerium-containing γ-alumina nanometer elements into a Pt-Pd bimetallic nanometer catalyst.The experiment about the sensitivity and stability performance of different catalytic methane sensors indicate that sensitivity,decreased by catalyst sulfur poisoning,is improved significantly by adding cerium to the vector.As well,the long-term operational stability of methane sensors increased significantly.  相似文献   

16.
研究了钢渣和γ-Al2O3对水溶液中磷素的等温吸附特征和吸附动力学过程。考察了初始溶液质量浓度和温度对吸附作用的影响,计算了钢渣和γ-Al2O3对磷素的吸附速率。结果表明:两者均符合Langmuir等温吸附模型,对磷素的最大吸附量:钢渣(0.3055mg/g)〈γ-Al2O3(0.6868mg/g);但缓冲容量:钢渣(0.8719L/mg)〉,γ-Al2O3(0.6131L/mg),钢渣具有较高的除磷性价比。随着初始溶液质量浓度的增大,钢渣和γ-Al2O3对磷素的平衡吸附量均增大,并显著延长了钢渣达到吸附平衡的时间。温度升高对两者的影响不大,只是显著延长了钢渣达到吸附平衡的时间。温度较高,初始溶液质量浓度较高的条件下,γ-Al2O3的吸附速率较大,有利于吸附作用的进行;相反的条件下,则有利于钢渣吸附作用的进行。钢渣和γ-Al2O3吸附除磷的吸附动力学过程均符合准二级动力学模型,由该模型可以估算出其对水溶液中磷素的平衡吸附量,误差基本在7%以内。  相似文献   

17.
以Fe2O3为活性组分,γ—Al2O3为载体,采用浸渍法制备了Fe2O3/Al2O3催化剂,并将其用于催化降解模拟聚丙烯酰胺(PAM)废水考察了催化剂制备条件对催化活性的影响,得出最佳制备工艺条件为:以Fe(NO3)3水溶液为浸渍液、活性组分负载量20%、焙烧时间3h、焙烧温度500℃在温度为60℃、pH=7.0、催化剂加入量为2g/L,H2O2的质量浓度为0.6g/L的条件下对质量浓度为400mg/L聚丙烯酰胺废水进行降解,反应90min后废水中聚丙烯酰胺相对分子质量降解率最高可达90%以上,CODcr去除率达86%,显示出了较高的催化活性.Fe2O3/Al2O3催化剂经过多次重复使用,催化活性基本没有降低,使用寿命长.  相似文献   

18.
采用纳米技术法、低温陈化法、加入稀土元素制备了新型的纳米固体超酸催化剂S2O8^2-/Pr2O3-ZrO3-Al2O3,以合成γ-羟基-4-甲基香豆素的化学反应作为探针反应考察了稀土含量、浸渍液浓度等对S2O8^2-/Pr2O3-ZrO3-Al2O3催化性能的影响,找出了催化荆制备的最佳条件.该催化剂对酯化反应有很高的催化活性,并具有可重复使用、再生容易、不腐蚀设备、不污染环境等优点,有广泛的应用前景.  相似文献   

19.
改性β沸石催化剂上混合C4的气相烷基化反应研究   总被引:1,自引:0,他引:1  
对烷/稀比较小(4.5:1)的混合C4为原料的气相烷基化反应进行了研究,考察了Hβ沸石及改性后制得催化剂上反应条件及改性方法对反应性能的影响,结果表明随着反应温度的升高三甲基戊烷/二甲基己烷值增大,这说明催化剂上的烷基化反应选择性和氢转移能力增加;进料空速增大C8产物选择性增大,但丁烯转化率降低;经超强酸改性后制得的SO^2-4-Fe2O3/Hβ-Al2O3催化剂具有较高的活性,烯烃转化率平均为13.88%;加入La2O3R后催化剂的烷基化反应稳定性增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号