首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article will compare two different fuzzy-derived techniques for controlling small internal combustion engine and modeling fuel spray penetration in the cylinder of a diesel internal combustion engine. The first case study is implemented using conventional fuzzy-based paradigm, where human expertise and operator knowledge were used to select the parameters for the system. The second case study used an adaptive neuro-fuzzy inference system (ANFIS), where automatic adjustment of the system parameters is affected by a neural networks based on prior knowledge. The ANFIS model was shown to achieve an improved accuracy compared to a pure fuzzy model, based on conveniently selected parameters. Future work is concentrating on the establishment of an improved neuro-fuzzy paradigm for adaptive, fast and accurate control of small internal combustion engines.  相似文献   

2.
This paper introduces a systematic approach for the design of a fuzzy inference system based on a class of neural networks to assess the students’ academic performance. Fuzzy systems have reached a recognized success in several applications to solve diverse class of problems. Currently, there is an increasing trend to expand them with learning and adaptation capabilities through combinations with other techniques. Fuzzy systems-neural networks and fuzzy systems-genetic algorithms are the most successful applications of soft computing techniques with hybrid characteristics and learning capabilities. The developed method uses a fuzzy system augmented by neural networks to enhance some of its characteristics like flexibility, speed, and adaptability, which is called the adaptive neuro-fuzzy inference system (ANFIS). New trends in soft computing techniques, their applications, model development of fuzzy systems, integration, hybridization and adaptation are also introduced. The parameters set to facilitate the hybrid learning rules for the constitution of the Sugeno-type ANFIS architecture is then elaborated. The method can produce crisp numerical outcomes to predict the student’s academic performance (SAP). It also provides an alternative solution to deal with imprecise data. The results of the ANFIS model are as robust as those of the statistical methods, yet they encourage a more natural way to interpret the student’s outcomes.  相似文献   

3.
介绍了一种利用模糊神经元网络实现车辆自动驾驶的设计方案.其基本设计思想 是首先通过模糊逻辑描述驾驶者的驾驶行为,然后利用驾驶者实际驾驶时采集的车辆运行情 况作为训练数据,通过神经元网络的自学习功能修改和改进模糊控制所需的输入/输出信 号的隶属度函数以及模糊推理的运算关系,做到简单控制实现与复杂学习算法的有效结合, 从而实现模糊神经元控制.本方案为智能车辆实现个性化自主或辅助自动驾驶提供了一种非 常有效的机制.  相似文献   

4.
There has been a growing interest in combining both neural network and fuzzy system, and as a result, neuro-fuzzy computing techniques have been evolved. ANFIS (adaptive network-based fuzzy inference system) model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. In this paper, a novel structure of unsupervised ANFIS is presented to solve differential equations. The presented solution of differential equation consists of two parts; the first part satisfies the initial/boundary condition and has no adjustable parameter whereas the second part is an ANFIS which has no effect on initial/boundary conditions and its adjustable parameters are the weights of ANFIS. The algorithm is applied to solve differential equations and the results demonstrate its accuracy and convince us to use ANFIS in solving various differential equations.  相似文献   

5.
《Applied Soft Computing》2008,8(1):609-625
Adaptive neural network based fuzzy inference system (ANFIS) is an intelligent neuro-fuzzy technique used for modelling and control of ill-defined and uncertain systems. ANFIS is based on the input–output data pairs of the system under consideration. The size of the input–output data set is very crucial when the data available is very less and the generation of data is a costly affair. Under such circumstances, optimization in the number of data used for learning is of prime concern. In this paper, we have proposed an ANFIS based system modelling where the number of data pairs employed for training is minimized by application of an engineering statistical technique called full factorial design. Our proposed method is experimentally validated by applying it to the benchmark Box and Jenkins gas furnace data and a data set collected from a thermal power plant of the North Eastern Electric Power Corporation (NEEPCO) Limited. By employing our proposed method the number of data required for learning in the ANFIS network could be significantly reduced and thereby computation time as well as computation complexity is remarkably reduced. The results obtained by applying our proposed method are compared with those obtained by using conventional ANFIS network. It was found that our model compares favourably well with conventional ANFIS model.  相似文献   

6.
潜艇垂直面运动自适应神经网络模糊控制仿真   总被引:1,自引:0,他引:1  
神经网络控制和模糊控制技术的广泛应用为潜艇自动舵控制器的设计提供了新的思路.而模糊规则的提取和隶属函数的学习是模糊推理系统设计中重要而困难的问题,自适应神经网络模糊推理系统(ANFIS)结合模糊控制和神经网络控制的优点,基于sugeno模糊模型采用反向传播法和最小二乘法调整模糊推理系统的参数,并自动产生模糊规则.利用方法对潜艇乖直面运动自动舵控制器进行了设计和仿真.从仿真结果来看,自适应神经网络模糊控制器能较好的实现对潜艇垂直面运动的操纵控制,是一种很好的控制方法.  相似文献   

7.
Neuro-fuzzy rule generation: survey in soft computing framework   总被引:9,自引:0,他引:9  
The present article is a novel attempt in providing an exhaustive survey of neuro-fuzzy rule generation algorithms. Rule generation from artificial neural networks is gaining in popularity in recent times due to its capability of providing some insight to the user about the symbolic knowledge embedded within the network. Fuzzy sets are an aid in providing this information in a more human comprehensible or natural form, and can handle uncertainties at various levels. The neuro-fuzzy approach, symbiotically combining the merits of connectionist and fuzzy approaches, constitutes a key component of soft computing at this stage. To date, there has been no detailed and integrated categorization of the various neuro-fuzzy models used for rule generation. We propose to bring these together under a unified soft computing framework. Moreover, we include both rule extraction and rule refinement in the broader perspective of rule generation. Rules learned and generated for fuzzy reasoning and fuzzy control are also considered from this wider viewpoint. Models are grouped on the basis of their level of neuro-fuzzy synthesis. Use of other soft computing tools like genetic algorithms and rough sets are emphasized. Rule generation from fuzzy knowledge-based networks, which initially encode some crude domain knowledge, are found to result in more refined rules. Finally, real-life application to medical diagnosis is provided.  相似文献   

8.
A new method based on the adaptive neuro-fuzzy inference system (ANFIS) for calculating the resonant frequency of the equilateral triangular microstrip patch antenna is presented. The ANFIS has the advantages of the expert knowledge of the fuzzy inference system and the learning capability of neural networks. A hybrid-learning algorithm, which combines the least-square method and the backpropagation algorithm, is used to identify the parameters of ANFIS. The results of the new method show better agreement with the experimental results, as compared to the results of previous methods available in the literature. © 2004 Wiley Periodicals, Inc. Int J RF and Microwave CAE 14, 134–143, 2004.  相似文献   

9.
《Applied Soft Computing》2008,8(2):928-936
Conventionally, the multiple linear regression procedure has been known as the most popular models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, intelligence system approaches such as artificial neural network (ANN) and neuro-fuzzy methods have been used successfully for time series modelling. In most instances for neural networks, multi layer perceptrons (MLPs) that are trained with the back-propagation algorithm have been used. The major shortcoming of this approach is that the knowledge contained in the trained networks is difficult to interpret. Using neuro-fuzzy approaches, which enable the information that is stored in trained networks to be expressed in the form of a fuzzy rule base, would help to overcome this issue. In the present study, a time series neuro-fuzzy model is proposed that is capable of exploiting the strengths of traditional time series approaches. The aim of this article is to investigate the potential of a neuro-fuzzy system with a Sugeno inference engine, considering different numbers of membership functions. Three rivers have been selected and daily prediction for them was applied. For better judgment, outcomes of the network have been compared to an autoregressive model.  相似文献   

10.
介绍了自适应神经模糊推理系统的结构,以及用MATLAB模糊工具箱提供的ANFIS应用工具仿真,完成训练模糊神经网络,将智能控制应用在城市交通控制中。  相似文献   

11.
The motor unit action potentials (MUPs) in an electromyographic (EMG) signal provide a significant source of information for the assessment of neuromuscular disorders. Since recently there were different types of developments in computer-aided EMG equipment, different methodologies in the time domain and frequency domain has been followed for quantitative analysis of EMG signals. In this study, the usefulness of the different feature extraction methods for describing MUP morphology is investigated. Besides, soft computing techniques were presented for the classification of intramuscular EMG signals. The proposed method automatically classifies the EMG signals into normal, neurogenic or myopathic. Also, multilayer perceptron neural networks (MLPNN), dynamic fuzzy neural network (DFNN) and adaptive neuro-fuzzy inference system (ANFIS) based classifiers were compared in relation to their accuracy in the classification of EMG signals. Concerning the impacts of features on the EMG signal classification, different results were obtained through analysis of the soft computing techniques. The comparative analysis suggests that the ANFIS modelling is superior to the DFNN and MLPNN in at least three points: slightly higher recognition rate; insensitivity to overtraining; and consistent outputs demonstrating higher reliability.  相似文献   

12.
In this paper, a novel neuro-fuzzy learning machine called randomized adaptive neuro-fuzzy inference system (RANFIS) is proposed for predicting the parameters of ground motion associated with seismic signals. This advanced learning machine integrates the explicit knowledge of the fuzzy systems with the learning capabilities of neural networks, as in the case of conventional adaptive neuro-fuzzy inference system (ANFIS). In RANFIS, to accelerate the learning speed without compromising the generalization capability, the fuzzy layer parameters are not tuned. The three time domain ground motion parameters which are predicted by the model are peak ground acceleration (PGA), peak ground velocity (PGV) and peak ground displacement (PGD). The model is developed using the database released by PEER (Pacific Earthquake Engineering Research Center). Each ground motion parameter is related to mainly to four seismic parameters, namely earthquake magnitude, faulting mechanism, source to site distance and average soil shear wave velocity. The experimental results validate the improved performance of the machine, with lesser computation time compared to prior studies.  相似文献   

13.
Stepping motors are widely used in robotics and in the numerical control of machine tools where they have to perform high-precision positioning operations. However, the variations of the mechanical configuration of the drive, which are common to these two applications, can lead to a loss of synchronism for high stepping rates. Moreover, the classical open-loop speed control is weak and a closed-loop control becomes necessary. In this paper, fuzzy logic is applied to control the speed of a stepping motor drive with feedback. A neuro-fuzzy hybrid approach is used to design the fuzzy rule base of the intelligent system for control. In particular, we used the ANFIS methodology to build a Sugeno fuzzy model for controlling the stepping motor drive. An advanced test bed is used in order to evaluate the tracking properties and the robustness capacities of the fuzzy logic controller.  相似文献   

14.
An expert system for used cars price forecasting using adaptive neuro-fuzzy inference system (ANFIS) is presented in this paper. The proposed system consists of three parts: data acquisition system, price forecasting algorithm and performance analysis. The effective factors in the present system for price forecasting are simply assumed as the mark of the car, manufacturing year and engine style. Further, the equipment of the car is considered to raise the performance of price forecasting. In price forecasting, to verify the effect of the proposed ANFIS, a conventional artificial neural network (ANN) with back-propagation (BP) network is compared with proposed ANFIS for price forecast because of its adaptive learning capability. The ANFIS includes both fuzzy logic qualitative approximation and the adaptive neural network capability. The experimental result pointed out that the proposed expert system using ANFIS has more possibilities in used car price forecasting.  相似文献   

15.
Mode choice modeling is probably the most important element of transportation planning. It affects the general efficiency of travel and the allocation of resources. The development of mode choice models has recently witnessed significant advances in many fields, such as passenger and freight transport. A large number of mathematical models have been used to model the traveler’s choice of mode and destination and the shipper’s choice of mode, shipment size and supply market, among others. Such models are not only becoming almost intractable but also data intensive, difficult to calibrate and update, and intransferable. These models cover a wide range of mathematical complexity and accuracy. This paper describes a new approach to mode choice of intercity freight transport modeling using artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS) models. The new approach combines the learning ability of artificial neural networks and the transparent nature of fuzzy logic. The approach is found to be highly adaptive and efficient in investigating non-linear relationships among different variables. The adaptive neuro-fuzzy inference system model is tested on the freight transport market in Turkey, Germany, France and Austria by using information on the freight flows and their attributes. The ANNs and ANFIS models are more successful in the representation of the non-linear behavior of mode choice of intercity freight transport compared to the classical models.  相似文献   

16.
Driving a car and piloting an airplane are the most common examples for manual control of complicated processes. Human operators are known to be nonlinear, adaptive, time varying and intelligent controllers. In some cases, the human operator may or may not be well trained or an expert, showing different dynamics from operator to operator as in driving example. Therefore, it is very difficult to obtain mathematical models of human operators in a human-in-the-loop-manual control tasks. The goal of this research is to find a simple dynamic model for the prediction of the human operator actions in a manual control system. A computer-based experiment has been designed using the system identification theory to collect data from human operators. The autoregressive with exogenous inputs (ARX), as a parametric model and the adaptive-network-based fuzzy inference system (ANFIS), as an intelligent modeling approach that has the advantages of both neural networks and fuzzy logic, have been investigated and compared for simple and fast implementation to predict the response of human operators. ANFIS, having only 32 rules, provided much better prediction results than ARX model.  相似文献   

17.
Tool wear detection is a key issue for tool condition monitoring. The maximization of useful tool life is frequently related with the optimization of machining processes. This paper presents two model-based approaches for tool wear monitoring on the basis of neuro-fuzzy techniques. The use of a neuro-fuzzy hybridization to design a tool wear monitoring system is aiming at exploiting the synergy of neural networks and fuzzy logic, by combining human reasoning with learning and connectionist structure. The turning process that is a well-known machining process is selected for this case study. A four-input (i.e., time, cutting forces, vibrations and acoustic emissions signals) single-output (tool wear rate) model is designed and implemented on the basis of three neuro-fuzzy approaches (inductive, transductive and evolving neuro-fuzzy systems). The tool wear model is then used for monitoring the turning process. The comparative study demonstrates that the transductive neuro-fuzzy model provides better error-based performance indices for detecting tool wear than the inductive neuro-fuzzy model and than the evolving neuro-fuzzy model.  相似文献   

18.
This paper investigates the feasibility of applying a relatively novel neural network technique, i.e., extreme learning machine (ELM), to realize a neuro-fuzzy Takagi-Sugeno-Kang (TSK) fuzzy inference system. The proposed method is an improved version of the regular neuro-fuzzy TSK fuzzy inference system. For the proposed method, first, the data that are processed are grouped by the k-means clustering method. The membership of arbitrary input for each fuzzy rule is then derived through an ELM, followed by a normalization method. At the same time, the consequent part of the fuzzy rules is obtained by multiple ELMs. At last, the approximate prediction value is determined by a weight computation scheme. For the ELM-based TSK fuzzy inference system, two extensions are also proposed to improve its accuracy. The proposed methods can avoid the curse of dimensionality that is encountered in backpropagation and hybrid adaptive neuro-fuzzy inference system (ANFIS) methods. Moreover, the proposed methods have a competitive performance in training time and accuracy compared to three ANFIS methods.  相似文献   

19.
Neuro-fuzzy control based on the NEFCON-model: recent developments   总被引:1,自引:0,他引:1  
 Fuzzy systems are currently being used in a wide field of industrial and scientific applications. Since the design and especially the optimization process of fuzzy systems can be very time consuming, it is convenient to have algorithms which construct and optimize them automatically. One popular approach is to combine fuzzy systems with learning techniques derived from neural networks. Such approaches are usually called neuro-fuzzy systems. In this paper we present our view of neuro-fuzzy systems and an implementation in the area of control theory: the NEFCON-Model. This model is able to learn and optimize the rule base of a Mamdani like fuzzy controller online by a reinforcement learning algorithm that uses a fuzzy error measure. Therefore, we also describe some methods to determine a fuzzy error measure for a dynamic system. In addition we present some implementations of the model and an application example. The presented implementations are available free of charge for non-commercial purposes.  相似文献   

20.
We applied three soft computing methods including adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM) and back-propagation artificial neural network (BPANN) algorithms for estimating the ground-level PM2.5 concentration. These models were trained by comprehensive satellite-based, meteorological, and geographical data. A 10-fold cross-validation (CV) technique was used to identify the optimal predictive model. Results showed that ANFIS was the best-performing model for predicting the variations in PM2.5 concentration. Our findings demonstrated that the CV-R2 of the ANFIS (0.81) is greater than that of the SVM (0.67) and BPANN (0.54) model. The results suggested that soft computing methods like ANFIS, in combination with spatiotemporal data from satellites, meteorological data and geographical information improve the estimate of PM2.5 concentration in sparsely populated areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号