首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 289 毫秒
1.
姜竣  翟东海 《计算机工程》2021,47(7):232-238,248
基于卷积神经网络目标检测算法的浅层特征图包含丰富的细节信息,但缺乏语义信息,而深层特征图则相反。为充分利用浅层和深层特征图特征,解决多尺度目标检测问题,提出一种新的单阶段目标检测算法(AFE-SSD)。以SSD算法为基础,分别对该算法中相邻的2个特征图进行特征融合,从而丰富浅层特征层的语义信息。通过对并行空洞卷积机制进行改进,构建多尺度特征提取模块,将融合后的特征图通入多尺度特征提取模块的方式丰富其多尺度信息,同时提升主干网络的特征提取能力。在PASCAL VOC2007测试集上的实验结果表明,AFE-SSD算法的mAP为79.8%,检测速度为58.8 frame/s,与SSD、DSSD算法相比,mAP分别提升了2.4和1.2个百分点,验证了所提特征融合方式及多尺度提取模块的有效性。  相似文献   

2.
针对原始SSD算法各检测特征层没有关联导致特征融合较差,使得检测效果不佳,而现有改进算法DSSD以及RSSD等检测速度太慢的问题,提出一种基于多任务分支的SSD目标检测算法.对特征金字塔进行研究,构建语义与定位级联模块和融合分裂模块用于两个不同分支,在通过两个分支模块之后得到两组多尺度特征,构建多尺度通道聚合模块进行融...  相似文献   

3.
特征增强的SSD算法及其在目标检测中的应用   总被引:1,自引:0,他引:1  
针对多尺度单发射击检测(SSD)算法不同尺度的特征层很难进行融合互补问题,提出一种特征增强的SSD(FE-SSD)算法.首先对SSD算法的金字塔特征层中,每一尺度的特征进行尺寸不变的卷积操作;然后将卷积前与卷积后的特征进行特征融合操作,进而产生一组新的金字塔特征层;最后在新产生的金字塔特征层上执行目标的检测与定位任务.在PASCALVOC2007公共数据库上进行实验,当输入图像尺寸为300×300时,检测精度(mAP)达到78.0%,检测速度(FPS)达到82.5帧/s.此外,在拓展实验中,文中算法对图像中模糊目标的检测效果也优于SSD算法.  相似文献   

4.
针对道路检测目标小、模型特征融合不充分等问题,提出了一种基于注意力机制和多尺度特征融合的道路目标检测算法MFFDM。该算法将Resnext50网络与注意力模块进行融合形成新的主干特征提取网络;其次,新增具有空间位置信息的底层检测层来匹配对小物体的检测;另外,利用反卷积模块及特征纹理提取模块设计多尺度特征融合网络DEFTFN。实验表明,与FCOS算法相比,该算法在KITTI数据集上的平均精度提升了9.3%,对道路行人目标的检测精度提升明显,提升幅度达14.6%。  相似文献   

5.
由于小目标的低分辨率和噪声等影响,大多数目标检测算法不能有效利用特征图中小目标的边缘信息和语义信息,导致其特征与背景难以区分,检测效果差。为解决SSD(single shot multibox detector)模型中小目标特征信息不足的缺陷,提出反卷积和特征融合的方法。先采用反卷积作用于浅层特征层,增大特征图分辨率,然后将SSD模型中卷积层conv11_2的特征图上采样,拼接得到新的特征层,最后将新的特征层与SSD模型中固有的4个尺度的特征层进行融合。通过将改进后的方法与VOC2007数据集和KITTI车辆检测数据集上的SSD和DSSD方法进行比较,结果表明:该方法降低了小目标的漏检率,并提升整体目标的平均检测准确率。  相似文献   

6.
SSD (Single Shot multi-box Detector)算法是在不同层的特征图上,进行多尺度对象的检测,具有速度快和精度高的特点.但是,传统SSD算法的特征金字塔检测方法很难融合不同尺度的特征,并且由于底层的卷积神经网络层具有较弱的语义信息,也不利于小物体的识别,因此本论文提出了以SSD算法的网络结构为基础的一种新颖的目标检测算法RF_SSD,该算法将不同层及不同尺度的特征图以轻量级的方式相融合,下采样层生成新的特征图,通过引入感受野模块,提高网络的特征提取能力,增强特征的表征能力和鲁棒性.和传统SSD算法相比,本文算法在精度上有明显提升,同时充分保证了目标检测的实时性.实验结果表明,在PASCAL VOC测试集上测试,准确率为80.2%,检测速度为44.5 FPS.  相似文献   

7.
针对以R-CNN展开的目标检测速度慢,传统的SSD算法在检测小目标精度不高的问题,提出一种改进的SSD算法.该算法提出轻量级网络融合+层级特征融合构建新的金字塔特征层来解决SSD对小目标识别率低的问题.将卷积前后的特征进行轻量级网络融合,形成新的金字塔特征层,对形成的特征层进行层级特征融合,形成最终的金字塔特征层,在最终的金字塔特征层上执行目标检测任务.在PASCAL-VOC2007的训练集和验证集上训练该算法,并在VOC2007测试集上测试该算法对小目标检测的有效性,检测速度达到81.5帧/s,与传统SSD算法相比,mAP提升了0.078.  相似文献   

8.
目的 在基于深度学习的目标检测模型中,浅层特征图包含更多细节但缺乏语义信息,深层特征图则相反,为了利用不同深度特征图的优势,并在此基础上解决检测目标的多尺度问题,本文提出基于卷积核金字塔和空洞卷积的单阶段目标检测模型。方法 所提模型采用多种方式融合特征信息,先使用逐像素相加方式融合多层不同大小的特征图信息,然后在通道维度拼接不同阶段的特征图,形成具有丰富语义信息和细节信息的信息融合特征层作为模型的预测层。模型在锚框机制中引入卷积核金字塔结构,以解决检测目标的多尺度问题,采用空洞卷积减少大尺寸卷积核增加的参数量,合理地降低锚框数量。结果 实验结果表明,在PASCAL VOC2007测试数据集上,所提检测框架在300×300像素的输入上检测精度达到79.3% mAP(mean average precision),比SSD(single shot multibox detector)高1.8%,比DSSD(deconvolutional single shot detector)高0.9%。在UCAS-AOD遥感数据测试集上,所提模型的检测精度分别比SSD和DSSD高2.8%和1.9%。在检测速度上,所提模型在Titan X GPU上达到21帧/s,速度超过DSSD。结论 本文模型提出在两个阶段融合特征信息并改进锚框机制,不仅具有较快的检测速度和较高的精度,而且较好地解决了小目标以及重叠目标难以被检出的问题。  相似文献   

9.
《计算机科学与探索》2019,(6):1049-1061
提出了一种改进的多尺度卷积特征目标检测方法,用以提高SSD(single shot multibox detector)模型对中目标和小目标的检测精确度。该方法先对SSD模型低层特征层采用区域放大提取的方法以提高对小目标的检测能力,再对高层特征层进行特征提取以改善中目标的检测效果。最后,利用SSD模型中原有的多尺度卷积检测方法,将改进的多层特征检测结果进行融合,并通过参数再训练以获得最终改进的SSD模型。实验结果表明,该方法在MS COCO数据集上对中目标和小目标的测试精确度分别为75.1%和40.5%,相比于原有SSD模型分别提升16.3%和23.1%。  相似文献   

10.
为了进一步提高多尺度目标检测的速度和精度,解决小目标检测易造成的漏检、错检以及重复检测等问题,提出一种基于改进YOLOv3的目标检测算法实现多尺度目标的自动检测。首先,在特征提取网络中对网络结构进行改进,在残差模块的空间维度中引入注意力机制,对小目标进行关注;然后,利用密集连接网络(DenseNet)充分融合网络浅层信息,并用深度可分离卷积替换主干网络中的普通卷积,减少模型的参数量,提升检测速率。在特征融合网络中,通过双向金字塔结构实现深浅层特征的双向融合,并将3尺度预测变为4尺度预测,提高了多尺度特征的学习能力;在损失函数方面,选取GIoU(Generalized Intersection over Union)作为损失函数,提高目标识别的精度,降低目标漏检率。实验结果表明,基于改进YOLOv3(You Only Look Once v3)的目标检测算法在Pascal VOC测试集上的平均准确率均值(mAP)达到83.26%,与原YOLOv3算法相比提升了5.89个百分点,检测速度达22.0 frame/s;在COCO数据集上,与原YOLOv3算法相比,基于改进YOLOv3的目标检测算法在mAP上提升了3.28个百分点;同时,在进行多尺度的目标检测中,算法的mAP有所提升,验证了基于改进YOLOv3的目标检测算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号