首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
范佳棋  李汀  李飞 《信号处理》2022,38(4):816-823
太赫兹通信技术凭借超大带宽的优势成为未来6G的关键技术之一。超大规模天线技术可以提供巨大的空间分集,提升频谱效率,同样在6G无线通信系统中起到关键作用。在基于移相器的大规模MIMO(multiple-input multiple-output)混合预编码中,由于太赫兹频段的超大带宽,不同频率的子载波信道具有不同的等效空间方向,发射端波束形成时,将带来严重的波束斜视问题。与此同时,随着天线规模的不断增长,超大规模天线技术的应用更进一步扩大了波束斜视造成的影响。针对超大规模天线阵列带来的波束斜视现象放大问题,本文利用3D MIMO平面天线阵列来改善这一状况。为进一步改善太赫兹频段超大带宽引起的波束斜视,在3D大规模MIMO系统的基础上,本文提出了基于两层移相器结构的混合预编码方案,利用第二层移相器,对不同频率的子载波进行补偿。实验结果表明,本方法可以有效地弥补波束斜视带来的阵列增益损失,实现接近最优的系统性能。   相似文献   

2.

Fifth and future generation (5G and B5G) wireless networks aim to serve users with higher data rates and lower latency. Data traffic due to the rapid growth in communication has motivated the study of Multiple Input Multiple Output (MIMO) systems. They utilize multiple antennas in both transmitter and receiver sides. It is necessary to improve the existing technology to achieve fast and reliable communication. In this research work, a rectangular array antenna based hybrid beamforming in a massive MIMO model has been proposed to improve the spectral efficiency of the system. Thus channel capacity with small RF chains is used. To achieve the high signal strength in the main lobe, Chebyshev tapering has been used to suppress the side lobes signals. In this manner, the proposed Hybrid Beamforming for Massive Output MIMO has been realized with a small complexity and higher spectral efficiency. In this research work, the spectral efficiency of both proposed Hybrid and fully-digital beamforming with a different number of RF chains for a various number of antennas at the transmitter, the receiver side has been analyzed. From the simulation results, it has been observed that the proposed rectangular array antenna based Hybrid beamforming in a massive MIMO system reduces the computational complexity up to 99% as compared with conventional fully digital beamforming to achieve the same spectral efficiencies, which is a productive model for 5G wireless networks.

  相似文献   

3.
Wireless communication is now a part of everyday life in the urban areas. Wireless LAN is mostly utilized communication system as an example. These wireless devices are data rate and range limited, for which the scientists are spending great efforts on finding ways to overcome these limitations. Multi input multi output (MIMO) antenna systems are the example through which these limitations have been reduced upto great extent which provides multilayer beamforming, diversity, and spatial multiplexing. Analysis of adaptive semiblind channel estimation scheme for MIMO antenna array systems with different code rate space time block coding (STBC) has been performed using the adaptive pilot assisted modulation scheme proposed earlier. Semi blind channel estimation method provides the best trade-off in terms of bandwidth overhead, computational complexity and latency. The result after using MIMO systems shows higher data rate and longer transmit range without any requirement of additional bandwidth or transmit power. This paper presents the detailed analysis of diversity coding techniques using MIMO antenna systems. Different STBC schemes have been explored and analyzed with the different code rate STBC using MATLAB environment and the simulated results have been compared in the semiblind environment which shows the improvement even in highly correlated antenna arrays, and is found close to the condition when channel state information is known to the channel.  相似文献   

4.

The massive multiple-input multiple-output (massive MIMO) system is the major section of the fifth generation (5G) future wireless cellular systems. It consists of hundreds of antennas in the base station that serves more number of users, concurrently. Thus, this system will get optimized energy usage, high data rate, and more precision because of their larger degrees of freedom. The computation power to the total power consumption ratio is considered for rapid increment owing to the more data traffic at the baseband unit that seeks more attention in the exploitation of massive MIMO systems for 5G wireless systems. The main intent of this paper is to develop the multi-user massive MIMO systems by deriving the joint optimization problem of computation and communication power. In the existing energy efficiency analysis, there is a negative effect on energy efficiency when increasing the count of RF chains and antennas by considering only computation power or communication power in massive MIMO. In order to overwhelm this problem, this paper focuses on two optimization problems. The first problem is focusing on the improvement of upper bound on energy efficiency with the optimal baseband and RF precoding matrices based on a new hybrid meta-heuristic algorithm. The combination of two well-performing meta-heuristic algorithms like electric fish optimization and dragonfly algorithm is used as the new algorithm, which is named as hybrid dragonfly with electric fish optimization (HD-EFO) for enhancing the efficiency of massive MIMO system. In the second phase, the joint optimization of both computation and communication power is performed by the same HD-EFO for developing the optimized hybrid precoding matrix. The extensive results have shown that the implemented multi-user massive MIMO systems with partially-connected structures using HD-EFO increase the cost and energy efficiencies, and save the maximum power.

  相似文献   

5.
Increasing demand for high-performance 4G broadband wireless is enabled by the use of multiple antennas at both base station and subscriber ends. Multiple antenna technologies enable high capacities suited for Internet and multimedia services, and also dramatically increase range and reliability. In this article we describe a multiple-input multiple-output OFDM wireless communication system, lab test results, and field test results obtained in San Jose, California. These are the first MIMO system field tests to establish the performance of MIMO communication systems. Increased capacity, coverage, and reliability are clearly evident from the test results presented in this article  相似文献   

6.
Multiple-input multiple-output (MIMO) wireless communication systems that employ multiple transmit and receive antennas can provide very high-rate data transmissions without increase in bandwidth or transmit power. For this reason, MIMO technologies are considered as a key ingredient in the next generation wireless systems, where provision of reliable data services for TCP/IP applications such as wireless multimedia or Internet is of extreme importance. However, while the performance of TCP has been extensively studied over different wireless links, little attention has been paid to the impact of MIMO systems on TCP. This paper provides an investigation on the performance of modern TCP systems when used over wireless channels that employ MIMO technologies. In particular, we focus on two representative categories of MIMO systems, namely, the BLAST systems and the space-time block coding (STBC) systems, and how the ARQ and packet combining techniques impact on the overall TCP performance. We show that, from the TCP throughput standpoint, a more reliable channel may be preferred over a higher spectral efficient but less reliable channel, especially under low SNR conditions. We also study the effect of antenna correlation on the TCP throughput under various conditions.  相似文献   

7.
In this paper, in order to improve the received signal strength (RSS) and signal quality, three arrays of electronically steerable parasitic array radiator (ESPAR) antennas are suggested for the ultra-high frequency (UHF) radio frequency identification (RFID) communication and sensing system applications. Instead of the single antenna, the array antennas have recently been widely used in many communication systems because of their peak gains, better radiation patterns, and higher radiation efficiency. Also, there are some important issues to use the antenna array like high data rates in wireless communication systems and to better understand the many targets or sensors. In this article, a wireless sensor network (WSN) is being investigated to overcome multipath fading and interference by antenna nulling technology that can be achieved through beam control ESPAR array antennas. The proposed ESPAR array antennas exhibit higher gains like 9.63, 10.2, and 12 dBi and proper radiation patterns from one array to another. Moreover, we investigate the mutual coupling effect on the performance of array antennas with different spacing (0.5λ, 0.75λ, λ) and configurations. It is found that the worst mutual coupling reduced by −28 to −34 dB for 2 × 2 array, −3 to −43 dB for 2 × 3 array, and finally −42 dB to −51 dB due to the antenna spacing from 0.5λ to λ. Thus, these suggested antennas could effectively be applied in the WSN communication systems, internet of things (IoT) networks, and massive wireless and backscatter communication systems.  相似文献   

8.
王倩  华权  周应超  申滨 《电信科学》2016,32(8):61-68
大规模MIMO系统中,当小区用户数与基站天线数较大时,各用户的信道条件不尽相同,提出一种适用于大规模MIMO下行链路的基于联合用户分组及天线选择的迫零波束成形算法。将用户分成两组,选择信道条件较优的一组用户来接收信号,并为每一个发送数据流选择最优的基站天线组合进行通信,以较小的性能损失,换取大规模MIMO 射频电路的成本与功耗的大幅度降低。仿真结果证明,该算法能够较好地实现系统性能与硬件复杂度的折中。  相似文献   

9.
提出一种应用于5G智能手机中结构紧凑的16单元多频段多输入多输出(MIMO)天线阵列。该多天线系统由8个紧凑天线阵列对组成,为了预留2G/3G/4G天线的布局空间,这8个天线阵列印刷在智能手机的两侧边上。每个天线阵列对由2个紧凑的间隙耦合环路天线组成,分别布置在系统板的上、下两侧;其中上侧天线工作在LTE band 46(5 150~5 925 MHz),下侧天线覆盖LTE band 42/43(3 400~3 800 MHz)。测试结果表明该天线阵列具有良好的阻抗匹配和隔离性能。同时还对MIMO一些包络相关系数进行了研究分析。最后研究了人手和头对整个天线性能的影响,仿真结果表明,在日常各种使用情况下,该天线阵列也具有良好的辐射特性。  相似文献   

10.
The advanced wireless communication system requires abridged energy consumption, enhanced data rate, and good signal coverage. The massive MIMO technology for 5G systems has been developed to accommodate several users simultaneously with superior throughput. The claim for high data rate wireless communication services is expanding quickly as time goes. Thus, the key difficulty is that as the number of users grows, the number of phase shifters grows as well, causing the system to consume more power; as a result, the system's energy efficiency decreases. Hybrid beamforming has recently emerged as an attractive technique for millimeter-wave (mmWave) communication systems. The analog beamformer in the RF domain and digital beamformer in the baseband are coupled through a minimal number of RF chains in hybrid beamforming architecture. Hybrid beamforming utilizes fewer RF (radio frequency) chains than the total number of antennas to have a lower energy consumption design. The hybrid beamforming for a mmWave-based massive MIMO system through different phase shifter selection mechanisms is proposed to achieve the highest energy efficiency for mmWave communications systems. The fully connected with phase shifter selection, sub-connected with phase shifter selection (SPSS), and fully connected and sub-connected with phase shifter selection with halved and doubled switches are considered for this research. The simulation results show the SPSS with halved switch outperforms on energy efficiency.  相似文献   

11.
We discuss the issues of designing small-size antennas for multiple-input multiple-output (MIMO) communication systems. Introduction of the notion "potential antenna" facilitates antenna performance estimations to a great extent. Potential antenna is an idealized perfect antenna capable of absorbing the absolute entirety of information from the electromagnetic field present in a given region of space. The potential antenna concept proves instrumental in demonstrating that the optimal number of spatial subchannels for a small-size receive region in a three-dimensional (3-D) omnidirectional channel is 6. We present a compact 6-port receive antenna for 3-D wireless channels. Evidence is given to show that the suggested antenna assures a channel capacity that approximates to the theoretical limit thus making the antenna fit for use in high data rate mobile MIMO systems  相似文献   

12.
随着无线通信技术和新型业务的快速发展,人们对数据传输速率提出了更高的需求。为进一步提高数据传输速率,通过增加基站天线数目构建Massive MIMO系统,是一种高效而相对便捷的方式。本文介绍了Massive MIMO研究进展和技术原理,并针对其特有的关键技术信道信息的获取、天线阵列的设计、低复杂度传输技术进行了分析讨论,最后从覆盖、容量、感知和上行干扰四个维度对4G网络上部署的Massive MIMO系统进行了评估分析。  相似文献   

13.
为了降低由于大规模基站天线阵列模数转换(analog-to-digital converters, ADCs)所造成的巨大硬件损耗,同时有效地提高系统的能量和频谱效率,基于迫零传输/迫零接收(zero-forcing transmitting/ zero-forcing receiving, ZFT/ZFR)预处理方案,文章提出了低分辨率模数转换的多用户全双工大规模多入多出(massive multiple-input multiple-output, massive MIMO)中继系统,基站采用放大转发(amplify-and-forward, AF)协议,并对系统频谱效率进行了分析。文章首先获得了任一用户对频谱效率的闭式表达式,然后分别对三种不同功率缩放方案下系统的频谱效率进行了渐近分析。研究结果表明,当基站天线数量足够大时,三种不同的功率缩放方案对系统的环路干扰和量化误差有不同的影响,且当信源功率固定、基站的传输功率与发送天线数量成反比时,系统能够有效地抑制系统的环路干扰和量化误差,这对低分辨率全双工massive MIMO 中继系统的部署具有一定的指导意义。   相似文献   

14.
MIMO OFDM短波无线通信的频率同步技术研究   总被引:1,自引:0,他引:1  
多输入多输出(MIMO)技术是最近几年发展起来的无线通信技术。目前利用MIMO技术提高短波通信的传输速率和可靠性的研究已经开展。论文着重研究了MIMO OFDM短波无线通信的频率同步技术,利用频域正交的训练序列完成了系统各个发射/接收天线对之间频偏不同时的载波频偏估计。  相似文献   

15.
陈宇  杨俊东 《电子测试》2020,(5):85-87,81
移动通信系统通过四代的发展变革,在5G的大规模商用下,多输入多输出(MIMO)技术凭借本身的特殊优点已经成为了5G的核心技术,MIMO具备着可在不用增加功耗的条件下提升无线系统性能的优点。它在应用多个天线时,传输的信号以信道分集的方式得到容量增益,凭借不同无线信道传输至接收天线。主要工作及创新点如下:(1)基于USRP平台设计了MIMO系统。(2)提出了解决设备相位同步的方案。  相似文献   

16.
基于MIMO系统的天线选择   总被引:1,自引:0,他引:1  
李对  王保云 《信息技术》2006,30(12):19-22
多天线MIMO(Multiple Input Multiple Output)系统利用多个收、发天线有效地改善无线通信系统性能,提高系统容量,增强系统可靠性。然而,由于使用多天线同时收发,这要求发射机和接收机使用与天线一样多的射频链路,增加了系统成本和复杂度。使用天线选择技术可以降低系统成本和复杂度,同时保留MIMO系统的优越性能。文中首先介绍了MIMO系统的实现方式,然后讨论天线选择的方法及性能,最后提出天线选择技术还存在的问题,并得出相关的结论。  相似文献   

17.
In this paper, a novel multiple antenna system framework, which combines smart antennas (SA) with multiple-input-multiple-output (MIMO) at the transmitter, is proposed. The downlink capacity of the single-user SA-MIMO wireless systems is investigated. The joint optimization problem corresponding to the capacity is deduced. After that, upper bounds of the capacity are given in general case and in the case of equal power allocation, respectively. Furthermore, in the case of equal power allocation and the same direction of departure from one transmit smart antenna to all antenna arrays at the receiver the closed-form expression of the capacity is obtained. Some numerical results are given to show that smart antennas can bring significant capacity gain for the MIMO systems due to the smart antennas gain, without additional spatial degrees of freedom, especially at high SNR with strong correlation among the MIMO channel links or at low SNR.  相似文献   

18.
Massive multiple-input multiple-output (MIMO) requires a large number (tens or hundreds) of base station antennas serving for much smaller number of terminals, with large gains in energy efficiency and spectral efficiency compared with traditional MIMO technology. Large scale antennas mean large scale radio frequency (RF) chains. Considering the plenty of power consumption and high cost of RF chains, antenna selection is necessary for Massive MIMO wireless communication systems in both transmitting end and receiving end. An energy efficient antenna selection algorithm based on convex optimization was proposed for Massive MIMO wireless communication systems. On the condition that the channel capacity of the cell is larger than a certain threshold, the number of transmit antenna, the subset of transmit antenna and servable mobile terminals (MTs) were jointly optimized to maximize energy efficiency. The joint optimization problem was proved in detail. The proposed algorithm is verified by analysis and numerical simulations. Good performance gain of energy efficiency is obtained comparing with no antenna selection.  相似文献   

19.
5G-NR为一种新的接入技术,以满足广泛的需求,包括增强的移动带宽、大规模机器式通信、超可靠和低时延通信等。新的无线接入技术能支持高达100GHz的宽频率范围。但对于6GHz以上的高频通信,存在着明显的路径损耗和穿透损耗。解决这一问题的其中一个解决方案是部署大型天线阵列以获得高波束赋形增益。因此,研究包括模拟/数字/混合波束形成在内的各种波束赋形的增强型大规模MIMO在内的新型无线电接口的多天线方案是十分必要的。  相似文献   

20.
未来第5代移动通信系统(5G)中无线数据业务量的爆发性增长推动着研究人员发展新的颠覆性技术.作为5G的关键候选技术之一,大规模多入多出(MIMO)在基站使用远超激活终端数的天线,能增加一个数量级的频谱效率并大幅降低发射功率.首先介绍了大规模MIMO的系统模型和理论性能,其次分析和归纳了在信道测量与建模、信道信息获取、传输方法的研究成果,然后简述了实验和测试进展,最后讨论了未来研究方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号