首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
煤制天然气采用耐硫甲烷化催化剂,减小了反应设备体积,对节省投资和降低能耗有积极意义。采用等体积浸渍法制备系列Mo-Ni/γ-Al2O3耐硫甲烷化催化剂,并对催化剂活性及耐硫性进行评价,考察浸渍液中不同Co和W元素添加量对催化剂活性的影响。结果表明,耐硫甲烷化催化剂活性中心MoS2和WS2的生成有利于提高CO转化率和CH4选择性,促进合成气生成CH4,Co的添加不利于提高催化剂的CO转化率和CH4选择性,而W元素的添加有利于提高催化剂的CO转化率和CH4选择性。在反应温度550℃、压力2 MPa和空速1 800 h-1条件下,n(H2)∶n(CO)=1∶1时,CO转化率为64.24%,CH4选择性为52.00%。n(H2)∶n(CO)=3∶1时,CO转化率为77.90%,CH4选择性为68.41%。  相似文献   

2.
以等离子体还原制备的Ni/Al2O3和Ni/MgO-Al2O3为催化剂,用氙灯模拟太阳光聚光系统进行CH4-CO2重整反应,并考察其催化性能及能量转化效率,实验结果表明,以等离子体还原并加入MgO助剂制备的Ni/MgO-Al2O3催化剂具有较好的低温催化活性,在温度为740℃时,CH4和CO2的最高转化率分别为83.6 25%.1和%,能量转化效率为41.5%,大大高于光伏法制氢效率的10.85%;XRD表征表明,等离子体还原使催化剂活性组分Ni具有良好的分散性和更小的纳米团簇结构,有利于甲烷的转化;MgO助剂的加入增强了催化剂表面的碱性,促进了CO2的吸附和解离。  相似文献   

3.
郭一平 《工业催化》2019,27(9):54-58
采用溶液燃烧法制备CO甲烷化Ni基催化剂,考察助剂MgO添加量对催化剂结构和性能的影响,并探讨MgO添加量-催化剂结构-CO甲烷化性能的构效关系。结果表明,MgO添加质量分数6%的催化剂具有适当的还原温度,其CO转化率、CH 4选择性和收率分别高达99%、97%和94.5%。催化剂寿命实验表明,在24 h反应时间内,6%MgO添加量的催化剂上CO转化率和CH 4选择性分别高达96%和94%以上,表现出较高的活性、选择性和稳定性。  相似文献   

4.
基于MCM-41的镍基甲烷化催化剂活性与稳定性   总被引:8,自引:3,他引:5       下载免费PDF全文
张加赢  辛忠  孟鑫  陶淼 《化工学报》2014,65(1):160-168
采用浸渍法分别以MCM-41,Al2O3和SiO2 为载体制备了不同镍负载量的甲烷化催化剂,并在连续流动固定床反应装置上对其甲烷化催化活性进行了评价。研究结果表明,与Ni/Al2O3和Ni/SiO2相比,相同镍负载量的Ni/MCM-41催化剂具有更好的催化活性。同时研究了Ni含量对于Ni/MCM-41催化剂催化活性的影响,发现随着Ni含量的增加,CO转化率和CH4收率逐渐升高,并且在Ni含量大于10%(质量分数)以后趋于稳定。在n(H2):n(CO)=3:1、反应压力1.5 MPa、反应温度350℃及质量空速12000 ml·h-1·g-1的反应条件下,10%Ni/MCM-41催化剂CH4选择性达到94.9%,CO转化率接近100%。在100 h催化活性稳定性试验中,10%Ni/MCM-41催化活性无明显下降,表现出良好的催化活性稳定性。采用X射线衍射(XRD)、氮气物理吸附(BET)、热重分析(TG)及氢气程序升温还原(H2-TPR)等技术手段对催化剂进行了表征,结果表明Ni颗粒大小是影响Ni/MCM-41催化剂催化活性的主要因素。  相似文献   

5.
用不同浓度的NH4NO3溶液处理商业硅胶,制得表面呈酸性的SiO2载体,以丙酮为浸渍液,采用等体积浸渍法制备了一系列负载型钴催化剂,考察了载体对催化剂还原能力和催化活性的影响。结果表明,酸性NH4NO3溶液的处理使载体表面pH值降低,SiO2表面所带负电荷减少,减弱了浸渍过程中带正电荷的Co2+与载体间的相互作用,从而提高催化剂还原度。随着NH4NO3溶液浓度的提高,CO转化率显著提高,CH4选择性则随之降低。当NH4NO3为0.06 g/mL时,CO转化率达到91.39%,CH4选择性为4.61%。  相似文献   

6.
考察了钼基耐硫甲烷化催化剂在不同反应温度下的催化活性,结果表明反应温度在560℃附近时甲烷化活性最高。在此温度下研究了空速、原料气中H2S、H2O、CO2、CH4、H2/CO等浓度对反应活性的影响,结果表明,原料气中H2S含量的增加有利于提高催化剂的甲烷化反应活性;H2O的加入促进了水煤气变换反应的进行但抑制了甲烷化反应,因此CO转化率虽没有下降但甲烷化效率却有所降低;添加CH4对甲烷化反应没有明显影响,而添加CO2则明显抑制了甲烷的生成。结合催化剂表征结果进一步对各因素的影响机理进行了分析,这为耐硫甲烷化工艺条件优化及催化剂设计提供了重要依据。  相似文献   

7.
采用共浸渍法制备了Ni-Mn/Al2O3催化剂,考察了助剂Mn的含量对催化剂结构及浆态床CO甲烷化性能的影响。采用XRD、H2-TPR、BET、TEM、H2-化学吸附等表征对催化剂进行了测试分析,结果表明,Mn助剂的引入能够促进Ni物种在载体表面的分散,减弱Ni物种与载体的相互作用,降低催化剂的还原温度,提高催化剂的比表面积,减小活性金属Ni的晶粒尺寸。随着Mn含量的增加,Ni-Mn/Al2O3催化剂的甲烷化性能先升后降,其中以Mn含量为4%(质量分数)时的催化甲烷化性能最佳,添加过量的Mn导致活性组分Ni被部分覆盖,催化甲烷化性能下降。通过对16Ni4Mn/Al2O3催化剂样品的浆态床反应温度及反应压力的研究发现,当反应温度为280℃、反应压力为1.5 MPa时,催化剂样品16Ni4Mn/Al2O3的CO转化率及CH4选择性分别达到96.2%和88.8%。  相似文献   

8.
根据热力学分析建立了等温条件和绝热条件下的合成气甲烷化的热力学模型,选取CO甲烷化反应、水汽变换反应、CO歧化反应为独立反应,CO、CH4和H2O为关键组分.基于此热力学模型可以得到等温条件下的输出气体组成、CO转化率与CH4选择性和绝热条件下的输出气体温度、组成、CO转化率与CH4选择性.并在绝热条件下讨论了输入温度...  相似文献   

9.
《化学工程》2016,(1):53-57
甲烷和二氧化碳重整制合成气是有效利用二氧化碳资源的重要途径,对于环境保护和综合利用资源具有重大意义。文章采用浸渍法制备一系列不同镍钼质量比的Ni-Cu-Mo/Al_2O_3催化剂,通过固定床反应器考察不同Ni/Mo质量比和反应温度对催化剂性能的影响,并采用XRD,BET,SEM,CO_2-TPD技术对催化剂进行了表征。结果表明:催化剂的最佳反应温度是800℃,Ni/Mo质量比为0.75的催化剂表现出最好的催化活性。在800℃,空速182 m L/(g·min)的反应条件下,CH_4、CO_2的转化率分别为97.7%,99.1%,CO,H2的选择性分别达到94.4%,92.1%。  相似文献   

10.
采用旋转真空浸渍法和等体积浸渍法分别制备了NiO/MgO-γ-Al2O3催化剂RVIC和WIC。N2吸附实验表明,RVIC催化剂具有更大的比表面积。XRD结果表明,RVIC和WIC中的镍物种存在方式均为尖晶石NiAl2O4;TPR结果表明,两试样均在800℃处出现尖晶石NiAl2O4的还原峰,且RVIC的还原峰面积比WIC的大13%。还原后的XRD结果表明,RVIC的Ni晶粒尺寸仅为5.8 nm,小于WIC的7.3 nm。H2-TPR结果显示,试样RVIC活性组分Ni的分散度为0.491,大于WIC(0.116)。活性评价结果显示,RVIC的CH4与CO2最终转化率分别为98%与77%,远远高于WIC(CH4与CO2最终转化率分别为55%和40%)。240 h寿命实验结果显示,RVIC的CH4转化率高达100%,CO2稳定转化率超过70%。  相似文献   

11.
胡雅琴  吕永康  王芳 《现代化工》2011,(7):56-58,60
采用溶胶-凝胶法在Co/BaTiO3催化剂中引入助剂MgO,考察了其对甲烷二氧化碳重整Co/BaTiO3催化剂的催化反应性能的影响,利用X射线衍射仪(XRD)、H2程序升温还原(H2-TPR)对催化剂进行了表征,结果表明,助剂MgO使钴催化剂中的活性Co2O3组分增多,还原性和分散性能较好;在n(CO2)∶n(CH4)为1∶1、气相空速(GHSV)为12 000 h-1、反应温度为700℃的条件下,催化剂Co-MgO/BaTiO3表现出良好的催化性能,且反应初期甲烷转化率可达到94.87%,CO选择性可达85.21%,H2收率可达74.08%。  相似文献   

12.
采用常规的浸渍法制备了镍基催化剂和经过镧改性的镍基催化剂,研究了甲烷催化部分氧化制备含氮合成气的催化功能,结果说明,镍含量在8%时催化活性达到最好,同时加入镧进行改性后催化剂的活性和选择性有所提高;该催化剂对甲烷空气催化部分氧化制合成气在常压下具有较高的转化率,随压力升高,转化率明显下降,并且积极严重,通过向体系加入H2O和CO2可以提高加压条件下甲烷的转化率并抑制催化剂积碳,还可以获得H2/CO接近2的合成气,满足合成液体燃料的要求。  相似文献   

13.
研究了铝助剂Ni-SiO2浆态床甲烷化催化剂的影响,结果表明,铝助剂的加入会增加催化剂还原难度,在Ni-SiO2催化剂可以被完全还原的条件下,加入铝助剂的催化剂样品均还原不完全。不同形态铝助剂对催化剂催化活性的影响不同,γ-Al2O3的加入在不降低催化剂CO转化率的同时可以提高甲烷的选择性,从而提高催化剂的甲烷收率;而α-Al2O3会大大降低催化剂的CO单程转化率而降低甲烷收率。  相似文献   

14.
利用共沉淀法制备了系列SrCO3/La2O2CO3催化剂,制备中沉淀剂的选择影响催化剂的物理化学性质,并最终决定其在低温甲烷氧化偶联(OCM)中的催化性能,其中以摩尔比2:1的NaOH/Na2CO3 为复合沉淀剂效果最好,对应的催化剂中检测到两种La2O2CO3的组分,分别为四方晶相的(I-)和六方晶相的(II-)La2O2CO3。这两种晶相的共存为OCM的低温反应提供所需要的活性位。助剂SrCO3 抑制了甲烷的过度氧化,提高了C2的选择性。所得到的最佳的催化剂能在100 oC炉温下维持OCM反应至少24 h,使CH4.转化率达到25.6%,C2选择性达到43.4%。伴随OCM的甲烷氧化生成COx的副反应产生的热点效应为OCM温和反应提供了热源。  相似文献   

15.
采用共浸渍法制备了添加不同助剂(CeO_2、ZrO_2、Co_3O_4、Y_2O_3、V_2O_5)的一系列Ni基催化剂,采用XRD、SEM、BET、H_2-TPR等对催化剂的结构进行表征,对Ni含量、助剂含量、浸渍顺序、焙烧温度、还原温度、空速等条件进行优化,并考察了催化剂的生物质合成气甲烷化性能。结果表明:助剂CeO_2、ZrO2、Y_2O_3、V_2O_5的加入均能提高催化剂对CO甲烷化的催化活性,其中6Ni-3CeO_2/Al_2O_3的催化活性、稳定性和抗积碳能力最好;采用6Ni-3CeO_2/Al_2O_3催化剂,在V(H_2)∶V(CO)∶V(N_2)=0.45∶0.15∶0.40、空速为20 000h-1、常压、350℃下,CO即可完全转化,甲烷选择性达到90%,较6Ni/Al_2O_3催化剂提高了16%,CO完全转化温度较6Ni/Al_2O_3催化剂低50℃。6Ni-3CeO_2/Al_2O_3催化剂的Ni含量明显低于文献报道,应用于生物质合成气催化加氢转化为甲烷,CO转化率达到80.5%,有效地解决了生物质合成气中CO含量高于民用燃气标准的问题。  相似文献   

16.
通过浸渍沉淀法分别制备Ni/Al2O3、Ni/CeO2和Ni/CeO2-Al2O3催化剂,并对其分别进行不同CO/CO2比例下COx共甲烷化性能评价。发现Ni/Al2O3催化剂催化CO转化为CH4的能力明显高于Ni/CeO2,而催化CO2甲烷化的性能则相反。采用Ni/CeO2-Al2O3催化剂,可以在提高CO转化率的同时而不降低CO2转化率。结合BET、XRD、TPR、TPD和原位红外等各种表征手段,发现CeO2掺杂虽然降低了催化剂的比表面积和金属Ni的分散度,但却可明显提高其吸附活化CO2的能力,这主要是由于具有较高含量氧空位的CeO2的掺杂可以提高载体表面碱性位,促使共甲烷过程中CO...  相似文献   

17.
采用溶液燃烧法制备CO甲烷化Ni基催化剂,考察了助剂MgO添加量对Ni-Al_2O_3催化剂结构和性能的影响,并初步探讨了MgO添加量-催化剂结构-CO甲烷化性能的构效关系。结果显示,质量分数6%MgO添加量的催化剂具有适宜的MgO晶体含量、适当的还原温度和较高的比表面积,其CO转化率、CH_4选择性和收率分别高达99%,97%和94.5%。寿命实验表明:在24 h反应时间内,质量分数6%MgO添加量的催化剂CO转化率和CH_4选择性分别高达97%和95%以上,表现出较高的活性、选择性和稳定性。  相似文献   

18.
Ni/γ-Al_2O_3催化剂上甲烷水蒸气重整制合成气   总被引:1,自引:0,他引:1  
采用固定床装置,考察了负载型Ni系列催化剂及反应条件对Ni/γ-Al2O3催化剂的甲烷水蒸气重整反应的影响,并利用XRD和TPR技术对催化剂样品进行表征。结果表明,在空速1 800 h-1,n(H2O)∶n(CH4)∶n(N2)=2.86∶1∶3.28,反应温度700℃的条件下,催化剂Ni含量在9%时反应性能最佳,可得到94.3%的CH4转化率和64.9%的CO选择性。  相似文献   

19.
以拟薄水铝石、硝酸镍以及镁、钴、镧和铁的硝酸盐为原料,尿素为燃烧剂,采用尿素燃烧法制备系列镍基(以及含助剂)甲烷化催化剂。通过XRD和BET等对催化剂结构进行表征,采用固定床反应器评价催化剂的合成气甲烷化催化反应性能,考察Ni含量、尿素与原料质量比、焙烧温度和不同助剂等对催化剂结构和性能的影响,评价催化剂的稳定性。结果表明,Ni O质量分数为7.5%~44.8%时,采用尿素燃烧法均可制备γ-Al2O3为载体的镍基甲烷化催化剂,最佳制备条件为:尿素与原料质量比3∶1,焙烧温度450℃,燃烧时间40 min。26.1%Ni O/γ-Al2O3催化剂表现出较好的催化性能,在230℃和常压条件下,CO转化率和CH4选择性分别达99.5%和98.3%。26.1%Ni O-2.6%La2O3/γ-Al2O3催化剂在(230~700)℃经过多次升降反应温度和1 460 h的长周期稳定性测试,表现出较好的稳定性和耐热冲击性能。  相似文献   

20.
采用负载型Rh/MgO/γ-Al2O3催化剂研究了毫秒级甲烷蒸汽重整过程,在水碳比为1和3的条件下,详细考察了反应温度、空速和催化剂Rh含量对反应转化率和选择性的影响。研究结果表明,Rh/MgO/γ-Al2O3催化剂在毫秒级操作条件下具有良好的催化性能,使用5%(质量分数)Rh催化剂,在水碳比3、反应温度1150K、空速641.11 L·(gcat)-1·h-1时,CH4转化率约90%,CO2选择性约20%,毫秒级接触时间反应行为即可接近热力学平衡。高温有利于毫秒级甲烷蒸汽重整过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号