首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
孟凡会  常慧蓉  李忠 《化工学报》2014,65(8):2997-3003
采用共浸渍法制备了Ni-Mn/Al2O3催化剂,考察了助剂Mn的含量对催化剂结构及浆态床CO甲烷化性能的影响。采用XRD、H2-TPR、BET、TEM、H2-化学吸附等表征对催化剂进行了测试分析,结果表明,Mn助剂的引入能够促进Ni物种在载体表面的分散,减弱Ni物种与载体的相互作用,降低催化剂的还原温度,提高催化剂的比表面积,减小活性金属Ni的晶粒尺寸。随着Mn含量的增加,Ni-Mn/Al2O3催化剂的甲烷化性能先升后降,其中以Mn含量为4%(质量分数)时的催化甲烷化性能最佳,添加过量的Mn导致活性组分Ni被部分覆盖,催化甲烷化性能下降。通过对16Ni4Mn/Al2O3催化剂样品的浆态床反应温度及反应压力的研究发现,当反应温度为280℃、反应压力为1.5 MPa时,催化剂样品16Ni4Mn/Al2O3的CO转化率及CH4选择性分别达到96.2%和88.8%。  相似文献   

2.
何璐铭  辛忠  高文莉  顾佳  孟鑫 《化工学报》2020,71(11):5007-5015
以三嵌段共聚物P123为模板剂,采用静电纺丝法制备了多孔Ni/SiO2催化剂,考察其在CO甲烷化中的催化性能。采用N2物理吸脱附测试、扫描电子显微镜(SEM)、X射线衍射(XRD)、H2-程序升温还原(H2-TPR)、透射电子显微镜(TEM)、热重分析(TGA)对催化剂的结构性质进行表征。结果表明,静电纺丝法制备的多孔Ni/SiO2催化剂活性组分Ni在SiO2载体纤维上高度分散,比表面积大,Ni颗粒尺寸小,金属与载体相互作用强,在CO甲烷化反应中表现出优异的催化活性和稳定性。在温度450℃,压力0.1 MPa,质量空速15000 ml/(g·h)条件下,多孔Ni/SiO2催化剂CO转化率最高可达96.4%,CH4选择性可达86.4%。此方法为工业上制备高催化活性且无须二次成型的甲烷化催化剂提供了新思路。  相似文献   

3.
采用烷基偶联剂水解法制备(Ni/MgAl2O4)@SiO2催化剂,探究Ni、SiO2质量分数对催化剂的甲烷干气重整(DRM)反应活性和抗积碳性能的影响。在常压、750℃、V(CH4)∶V(CO2)∶V(N2)=5∶5∶1、GHSV=26 400 mL/(gcat·h)条件下进行DRM反应,(10Ni/MgAl2O4)@5SiO2催化剂表现出最好的反应性能,CH4转化率为77%,CO2转化率为90%。通过TEM、SEM等表征发现,SiO2可以包覆在Ni/MgAl2O4催化剂表面,阻碍Ni晶粒团聚,增大催化剂的抗积碳性能。将该催化剂在严苛条件[V(CH4)∶V(CO2)∶V(N2...  相似文献   

4.
赵玺乐  栗怡  乔婷婷  公丹丹 《广州化工》2022,50(5):52-54+69
将二氧化碳转化为易于储存和运输的高热值燃料——甲烷,不仅可以缓解温室效应,也是解决能源短缺的有效途径。本文采用柠檬酸络合的等体积超声浸渍法制备一系列NiO-La2O3/SiO2催化剂,其中镍和镧的摩尔比为1:1,并采用XRD、H2-TPR表征技术对NiO-La2O3/SiO2催化剂的结构和物化性质进行了研究。考察了NiO-La2O3的负载量对CO2甲烷化反应性能的影响。结果表明,10%NiO-La2O3/SiO2催化剂表现出最优的CO2甲烷化反应性能,且在450℃时表现出最佳的反应活性,CO2转化率和CH4选择性分别为59.3%和60.8%。  相似文献   

5.
采用浸渍法制备不同组成催化剂Ni-M/γ-Al2O3(M=Zr、Co、Mg、Nd),通过固定床反应装置考察不同助剂、助剂含量和反应温度对催化剂活性的影响,并对催化剂进行X射线衍射表征。结果表明,14Ni-5Mg/γ-Al2O3的催化活性较好,随着反应温度的升高,甲烷转化率和CO收率均升高,反应温度升至800 ℃时,甲烷转化率达97.54%。采用共沉淀法制备载体、浸渍法制备的催化剂14Ni/MgO-Al2O3,在反应温度800 ℃、压力1.013 kPa、n(CO2)∶n(CH4)=1.2和催化剂用量0.5 g条件下,CO收率高于14Ni-5Mg/γ-Al2O3催化剂,但甲烷转化率略低。  相似文献   

6.
采用等体积浸渍法在Ni基催化剂上添加W助剂制备Ni/W-Al2O3催化剂,探究Ni负载量、W摩尔分数和焙烧温度对催化剂CO选择性甲烷化的影响。利用XRD、N2-物理吸附、H2-TPR、NH3-TPD、CO2-TPD、TEM等对催化剂进行表征。结果表明,有W的催化剂在低温下活性很差,不能提高活性。在Ni负载量为20%、W摩尔分数为0.05、焙烧温度为900℃、空速为4 800 h-1的条件下,反应温度在207~339℃范围内,20%Ni/0.05W-Al2O3-900℃催化剂能使CO出口体积分数始终小于10μL/L,CH4出口体积分数小于2%。  相似文献   

7.
石斌  成文文  李志祥 《化工进展》2015,34(10):3671-3675
通过等体积浸渍法分别将Ni(NO3)2、NiCl2、NiSO4 3种镍前体浸渍于A12O3或SiO2载体上,然后通过H2高温还原法制备了负载型镍基催化剂,考察了镍前体、载体种类、镍负载量、反应条件等对镍基催化剂苯酚加氢性能的影响。结果表明,对比3种镍前体,在H2高温还原体系中Ni(NO3)2最容易被还原,制备的镍基催化剂苯酚加氢活性最高。SiO2负载的镍基催化剂活性远高于γ-Al2O3催化剂。适宜的Ni负载量有助于活性组分的分散和催化活性的提高。镍基催化剂的苯酚加氢产物以环己醇为主,相对缓和的反应条件更容易生成环己酮。在非极性溶剂正庚烷或环己烷存在下,苯酚加氢反应速率远远高于极性溶剂水或乙醇存在下的结果,而且环己酮的选择性更高。  相似文献   

8.
前期工作表明Ni/Si3N4催化剂在甲烷部分氧化反应中有较好的催化活性和很强的抗积炭能力。在前期工作的基础上考察了镍负载量和焙烧温度对Ni/Si3N4催化剂在甲烷部分氧化中催化性能的影响,并采用XRD、TPR、XPS等技术对催化剂进行了表征。结果表明,镍负载量和焙烧温度影响催化剂活性组分的表面分布和晶粒尺寸,并进一步影响催化剂的反应性能。在800℃反应条件下,活性组分负载量与CH4转化率之间的关系为:C-10>C-15>C-5>C-1;而焙烧温度与CH4转化率大小顺序为:S(400)> S(600)>S(800)。  相似文献   

9.
采用浸渍和粉末压片的方法制备了两种ZrO2-Al2O3复合载体并用于负载Ni基催化剂,并利用氮气等温物理吸附、X射线粉末衍射(XRD)、H2程序升温还原(H2-TPR)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析手段对催化剂物化性质进行表征,考察了ZrO2-Al2O3复合载体制备方法及ZrO2的引入对Ni基催化剂在CO、CO2和CO-CO2共存的3种体系下甲烷化反应活性的影响。材料表征和活性测试结果表明,在CO甲烷化体系中,与单一Al2O3载体相比,引入ZrO2的复合载体能有效提高催化剂中Ni物种的分散度从而增强CO甲烷化过程中催化剂活性,且粉末压片法较浸渍法制备的复合载体能有效提高催化剂的还原度,降低还原温度,但前者会大大降低催化剂的比表面积;在CO2甲烷化体系中,当载体形貌和制备方法相同时,载体的变化对催化剂活性的影响较小,CO2转化率主要受到制备方法不同引起的物理性质如比表面积变化的影响;在CO-CO2共存体系中,由于CO在竞争吸附中比CO2更容易占据活性位点,所以呈现出优先进行CO甲烷化再进行CO2甲烷化、CO2的含量先增多后减少的规律。  相似文献   

10.
江罗  陈标华  张吉瑞 《化工学报》2012,63(11):3519-3524
用浸渍法制备了以Al2O3为载体、Ni为活性组分的Ni/Al2O3二氧化碳甲烷化催化剂,在等温固定床反应器中研究了在Ni/Al2O3催化剂作用下,高纯氯化氢中微量CO2甲烷化反应效果,并考察了温度、压力、氯化氢体积空速以及H2/CO2摩尔比对CO2转化率的影响,同时研究了催化剂活性、稳定性及其再生性能。结果表明,在温度为250℃、压力为4.0 MPa、氯化氢空速为100 h-1、H2/CO2摩尔比为500:1条件下,CO2甲烷化反应效果最好,其转化率可达到90%左右,对于高纯氯化氢中微量CO2的脱除起到很好的效果;催化剂在温度高于300℃时,反应不久后会迅速失活;催化剂再生性能只能部分恢复到新鲜水平。  相似文献   

11.
Skeletal isomerization of n-pentane in the presence of hydrogen has been studied over Pt-promoted H3PW12O40 (TPA)/MCM-41 bifunctional catalyst. A series of solid acid catalysts with different loading amount of TPA and Pt were prepared and characterized by XRD, FT-IR and XPS. The optimal catalytic activity of Pt-TPA/MCM-41 was observed with 2% Pt and 30% TPA. According to the cracked products distribution, this is typical of a monomolecular bifunctional metal-acid mechanism. Further, catalysts with different combination of noble metals (Pt, Pd and Ru), heteropoly acids (HPAs) (TPA, tungstosilicic acid (TSA), and molybdophosphoric acid (MPA)) and supports (MCM-41, SBA-1 and SiO2) were also synthesized and their catalytic performances were compared.  相似文献   

12.
Ni–W hydrodesulfurization (HDS) catalysts supported on MCM-41 synthesized from two different silica sources (sodium silicate hydrate and tetraethylorthosilicate) as well as on Na+ or K+ ion exchanged MCM-41 were prepared. These catalysts were used to investigate the influence of the surface properties of MCM-41 on the performance of HDS catalysts with DBT as the model molecule. The XRD and N2 adsorption results indicated that the MCM-41 prepared from tetraethylorthosilicate (MCM-41(T)) exhibited the best structural properties. The mesostructure of MCM-41 synthesized from sodium silicate (MCM-41(S)) remained after ion exchange with Na2C2O2 and K2C2O2. Both pyridine FT-IR and Hammett indicators showed that only MCM-41(S) possessed some Brönsted and Lewis acid sites. Ni–W/MCM-41(S) showed the highest HDS and hydrogenation activities. The introduction of Na+ and K+ strongly inhibited the hydrogenation activity of Ni–W/MCM-41(S) but enhanced its hydrogenolysis activity. UV–vis and TPR studies indicated that the introduction of Na+ and K+ into MCM-41(S) may lead to the segregation of surface Ni species and may hinder the reducibility of the supported Ni–W oxides. Spillover hydrogen, which is “trapped” by Na+ and K+, may play an important role in the HDS activity and selectivity of Ni–W catalysts.  相似文献   

13.
A series of Fe3+ containing catalysts were synthesized using ion-exchange technique over hierarchically porous ZSM-5 (M-ZSM-5) and micro-mesoporous composite ZSM-5/MCM-41 (ZSM-5/MCM-41), respectively. The prepared catalysts were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, N2 adsorption–desorption, UV–Vis spectroscopy, temperature programmed reduction and inductively coupled plasma-optical emission spectroscopy. The characterization results exhibit that the hierarchically porous ZSM-5 was synthesized with intracrystalline mesopores, while the micro-mesoporous composite ZSM-5/MCM-41 was prepared with the well-ordered mesopores. Furthermore, the results also prove that the existence of iron in the catalysts was mainly presented in the form of Fe3+ ions. Catalytic performances of the samples for phenol hydroxylation were compared by using H2O2 as oxidant. Under the optimized conditions, Fe3+ ion-exchanged M-ZSM-5 (Fe-M-ZSM-5) shows that a phenol conversion of 42.3% obtained with 92.5% selectivity to dihydroxybenzenes, whereas Fe3+ ion-exchanged ZSM-5/MCM-41 (Fe-ZSM-5/MCM-41) give 46.2% phenol conversion and 90.1% dihydroxybenzenes selectivity, which are all better than most reported results. The recyclability tests show that Fe-ZSM-5/MCM-41 with ordered mesoporous structure and bigger surface area has better anti-deactivation performance than Fe-M-ZSM-5. The excellent catalytic performances were due to the improved diffusion performance with newly created mesopores and the highly active Fe3+ species obtained by ion-exchange technique.  相似文献   

14.
Ni/SiC and Ni/SiO2 catalysts prepared by both wet impregnation (WI) and deposition–precipitation (DP) methods were compared for CO and CO2 methanation. The prepared catalysts were characterized using N2 physisorption, temperature-programmed reduction with H2 (H2-TPR), H2 chemisorption, pulsed CO2 chemisorption, temperature-programmed desorption of CO2 (CO2-TPD), transmission electron microscopy, and X-ray diffraction. H2-TPR analysis revealed that the catalysts prepared by DP exhibit stronger interaction between the nickel oxides and support than those prepared by WI. The former catalysts exhibit higher Ni dispersions than the latter. The catalytic activities for both reactions over Ni/SiC and Ni/SiO2 catalysts prepared by WI increase on increasing the Ni content from 10 to 20 wt%. The Ni/SiC catalyst prepared by DP shows higher catalytic activity for CO and CO2 methanation than that of the Ni/SiC catalyst prepared by WI. Furthermore, it exhibits the highest catalytic activity for CO methanation among the tested catalysts. The high Ni dispersion achieved by the DP method and the high thermal conductivity enabled by SiC are beneficial for both CO and CO2 methanation.  相似文献   

15.
Ceria-promoted sulfated zirconia (CeSZ) was supported on mesoporous molecular sieve of pure-silica MCM-41 (abbreviated as CeSZ/MCM-41). It was prepared by direct impregnation of metal sulfate onto the as-synthesized MCM-41, followed by solid state dispersion and thermal decomposition. The resultant catalysts were characterized by TG, XRD, nitrogen physisorption and TEM. It was showed that the hollow tubular structure of MCM-41 was retained, even with ZrO2 loading as high as 60 wt.%. Most of CeSZ was well dispersed on the interior surface of the ordered mesopores, following a slight twist of the channels. The catalytic activity of CeSZ/MCM-41 was studied in the octadecanol oxidation. The improved performance of CeO2-promoted catalysts was attributed to the high dispersion of sulfated zirconia (SZ) and the introduction of CeO2 enhancing the oxidation ability of catalysts by retarding the transformation of zirconia from highly catalytic active metastable tetragonal phase to monoclinic phase.  相似文献   

16.
BACKGROUND: Liquid‐phase catalytic hydrogenation of m‐dinitrobenzene is an environmentally friendly routine for m‐phenylenediamine production. The key to increasing product yield is to develop catalysts with high catalytic performance. In this work, La2O3‐modified Ni/SiO2 catalysts were prepared and applied to the hydrogenation of m‐dinitrobenzene to m‐phenylenediamine. The effect of La2O3 loading on the properties of Ni/SiO2 was investigated. The reaction kinetic study was performed in ethanol over Ni/3%La2O3–SiO2 catalyst, in order to clarify the reaction mechanism of m‐dinitrobenzene hydrogenation. RESULTS: It was found that the activity of the silica supported nickel catalysts is obviously influenced by La2O3 loading. Ni/3%La2O3–SiO2 catalyst exhibits high activity owing to its well dispersed nickel species, with conversion of m‐dinitrobenzene and yield of m‐phenylenediamine up to 97.1% and 94%, respectively. The results also show that Ni/3%La2O3–SiO2 catalyst can be reused at least six times without significant loss of activity. CONCLUSION: La2O3 shows strong promotion of the effect of Ni/SiO2 catalyst for liquid‐phase hydrogenation of m‐dinitrobenzene. La2O3 loading can affect the properties of Ni/SiO2 catalyst. Based on the study of m‐dinitrobenzene hydrogenation kinetics over Ni/3%La2O3–SiO2 catalyst, a possible reaction mechanism is proposed. Copyright © 2009 Society of Chemical Industry  相似文献   

17.
The effect of using a mixture of 10 mol% H2S and H2 to passivate a Ni2P/MCM-41 catalyst was studied. It was found that H2S passivation was superior to conventional O2 passivation because it gave a higher HDS activity and required no post re-reduction. Chemisorption of CO indicated that the passivation layer covered or replaced the surface active sites. Characterization of X-ray photoelectron spectroscopy revealed that the sulfur species on the surface of the H2S-passivated Ni2P/MCM-41 were polysulfide ligands rather than S2? or S2?2 and the sulfur species were partially oxidized. A treatment with NH3 was also used, and it was found that N species were strongly bonded to the surface sites of Ni2P. Hydrodesulfurization and hydrodenitrogenation/hydrodeoxygenation were carried out in an alternating sequential manner to study the effect of surface sulfur on the catalytic activity of Ni2P/MCM-41. Sulfur analysis of the spent catalysts revealed that the HDS activity correlated with the sulfur content retained on Ni2P/MCM-41, indicating that sulfur is part of the active sites of the HDS reaction.  相似文献   

18.
The liquid-phase stereoselective hydrogenation of phenyl alkyl acetylenics at 298 K and atmospheric pressure on Pd-supported catalysts has been studied. The catalysts were prepared by impregnation of Pd(acac)2 precursor (1 wt% of Pd) on different siliceous substrates such as amorphous SiO2, mesoporous MCM-41 and silylated MCM-41. The poisoning effect of lead incorporation on the supported palladium was also studied. All the catalysts displayed high selectivity to cis-alkene isomer, with Pd/MCM-41 being the most active catalyst. Deliberately adding lead to the base, palladium catalysts underwent changes in the selectivity to cis-alkene isomer and a significant drop in the activity. All the solids were characterized by nitrogen adsorption–desorption isotherms at 77 K, TGA, TPR, H2 and CO chemisorption, XRD, XPS, and TEM.  相似文献   

19.
Mesoporous nickel(30 wt%)-M(10 wt%)-alumina xerogel (30Ni10MAX) catalysts with different second metal (M = Fe, Ni, Co, Ce, and La) were prepared by a single-step sol–gel method for use in the methane production from carbon monoxide and hydrogen. In the methanation reaction, yield for CH4 decreased in the order of 30Ni10FeAX > 30Ni10NiAX > 30Ni10CoAX > 30Ni10CeAX > 30Ni10LaAX. Experimental results revealed that CO dissociation energy of the catalyst and H2 adsorption ability of the catalyst played a key role in determining the catalytic performance of 30Ni10MAX catalyst in the methanation reaction. Optimal CO dissociation energy of the catalyst and large H2 adsorption ability of the catalyst were favorable for methane production. Among the catalysts tested, 30Ni10FeAX catalyst with the most optimal CO dissociation energy and the largest H2 adsorption ability exhibited the best catalytic performance in terms of conversion of CO and yield for CH4 in the methanation reaction. The enhanced catalytic performance of 30Ni10FeAX was also due to a formation of nickel–iron alloy and a facile reduction.  相似文献   

20.
The effect of TiO2 on the hydrodenitrogenation (HDN) performance of MoP/MCM-41 was investigated using quinoline and decahydroquinoline as the model molecules. The catalysts were characterized by XRD, CO chemisorption, TEM, TPR and pyridine FT-IR. Addition of TiO2 enhanced the C–N bond cleavage activity of MoP/MCM-41 but inhibited its dehydrogenation activity. A maximum HDN activity was observed when the TiO2 loading was 5 wt%. The characterization results indicated that introduction of TiO2 did not affect the formation of MoP phase. The TiO2-containing catalysts possessed higher CO uptake than MoP/MCM-41, but no significant differences in the acid properties and particle size distributions were observed for all the catalysts. XPS results revealed a surface enrichment of TiO2 in Ti-containing catalysts and small amount of these surface TiO2 can be partially reduced to Tin+ (n < 4). It is suggested that these Tin+ (n < 4) species may be responsible for the promoting effect of TiO2 on the HDN performance of MoP/MCM-41.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号