首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
采用拉伸与测温试验同时进行的方法,将应力应变曲线与热能曲线相结合,动态研究热轧TRIP钢拉伸过程中的相变热.研究表明:热轧TRIP钢在拉伸过程中材料增加的热能由部分转变的塑性功和马氏体相变热组成,因此,拉伸过程中实际测得的试样热能高于由塑性功转变的热能.利用平均综合热能损失系数对低速拉伸的TRIP钢的热能进行补充,通过计算与推导,证实了试样在刚进入塑性变形时,一定数量的较不稳定残余奥氏体首先集中发生马氏体相变,随着应变的进一步加大,剩余的较稳定的残余奥氏体根据其稳定情况发生马氏体相变的数量逐渐减少,在试样均匀延伸结束前绝大部分残余奥氏体已转变为马氏体.结合相变热变化可动态描述热轧TRIP钢形变过程中马氏体相变的情况.   相似文献   

2.
TRIP钢在原位拉伸过程中应力迫使残余奥氏体向马氏体转变,在此过程中伴随着应力松弛,断裂被延迟。整个变形过程中,试样加载后,先在铁素体内部产生滑移带,滑移带的方向与拉应力的方向约成45°;TRIP钢裂纹源首先在V型缺口与夹杂物处产生,然后扩展并连接,且裂纹的走向经常产生转折,即残余奥氏体转变为马氏体裂纹的尖端被钝化。利用EBSD技术,分析了未变形与断裂后钢板残余奥氏体的分布与稳定性,发现小尺寸和分布在铁素体内部的残余奥氏体比较稳定。  相似文献   

3.
含有7-18%残余奥氏体的低碳合金铁素体-马氏体-残余奥氏体三相钢通过成份设计和临界退火获得。残余奥氏体量和其机械稳定性对拉伸性能的影响及残余奥氏体在拉伸过程中应变诱发马氏体转变通过X-射线衍射、拉伸试验和透射电镜来研究。试验结果显示,残余奥氏体量对临界退火方式敏感。残余奥氏体是弧立型且是机械不稳定原,残余奥氏体内会发生应变诱发马氏体相变,转变次序是残余奥氏体重(fcc)→层错(hcp)→马氏体(bcc)。残余奥氏体对三相钢拉伸性质的影响是非常明显的:极限拉伸强度、初始和终止工作硬化速率和均匀延伸率增加;屈服强度相对于极限拉伸强度、屈强比,总延伸率和断面收缩率减小;断面收缩抗力增加。  相似文献   

4.
刘莉 《山东冶金》2014,(6):30-33
利用TEM和EPMA对TRIP钢中残余奥氏体形貌以及碳元素的分配进行了研究,发现TRIP钢中的残余奥氏体以多种形态分布,且碳在残余奥氏体中的浓度显著高于其他两相中的浓度,此时残余奥氏体可以通过EPMA中的贫硅区表示;变形之后的残余奥氏体将会发生相变,通过TEM发现残余奥氏体在受到应力作用而发生相变之后转变为细小的立方马氏体,且由于碳原子来不及扩散,马氏体中的含碳量和奥氏体中的含碳量基本相同。  相似文献   

5.
采用数值模拟研究了微观组织具有明显方向性的低温贝氏体在多种受力条件下的组织演变、相变行为以及应力应变再分布过程。通过扫描电镜(SEM)及其电子背向散射衍射探头(EBSD)获得低温贝氏体钢的微观组织特征,构建基于真实微观组织的代表性体积元(RVE)模型,引入Serri-Cherkaoui马氏体相变判定准则,采用ABAQUS用户材料子程序VUMAT进行二次开发,建立了基于真实微观组织的低温贝氏体微观组织应力应变模型。分析结果表明,低温贝氏体中的残余奥氏体在变形过程中可以有效调节微区应力分布,这种调节作用和残余奥氏体的形态以及分布有关。在变形过程中由于微区应力状态分布较为复杂,发生马氏体转变的位置通常是不均匀的。在整个变形过程中,残余奥氏体的受力转变使得贝氏体基体由相对的硬相逐渐转变为相对的软相,基体的应力分布发生了较大的改变。  相似文献   

6.
研究14Cr-ODS、16Cr-ODS与310奥氏体钢在600℃/25 MPa的超临界水中的应力腐蚀开裂行为。通过慢应变速率拉伸实验得到应力-应变曲线,以及不锈钢的抗拉强度和伸长率。应力-应变曲线显示14Cr-ODS与16Cr-ODS都出现颈缩,而310奥氏体钢没有颈缩,达到极限强度后直接断裂,表现为脆性断裂特征。用扫描电镜对断口形貌进行观察,结果表明:16Cr-ODS的伸长率达到20%,断口成杯锥状,存在明显颈缩,但没有应力腐蚀开裂敏感性;14Cr-ODS断面上有韧窝出现,没有明显的应力腐蚀开裂敏感性;310奥氏体钢断裂方式几乎全为沿晶脆断,具有应力腐蚀开裂敏感性。  相似文献   

7.
采用Gleeble-3500热模拟试验机测定了不同温度下中锰钢的变形抗力,并通过分阶段拉伸、扫描电镜、电子背散射衍射、X射线衍射等实验手段,对温轧中锰钢中逆转变奥氏体的相变行为进行观察和分析。研究发现,热轧马氏体中锰钢经过600℃温轧及退火后,获得较多较稳定的残余奥氏体,从而实现强度859 MPa和延伸率36%的优良力学性能。拉伸变形前期,锯齿状流变应力现象明显,残余奥氏体提供持续的TRIP效应来提高塑性,此过程中尺寸较大的逆转变奥氏体稳定性差,变形时先发生转变;拉伸变形后期,锯齿状波动消失,超细晶铁素体和马氏体发生塑性变形,马氏体强化及铁素体中的位错强化为主要强化方式。   相似文献   

8.
残余奥氏体对中碳贝氏体钢的塑韧性起到非常重要的作用,采用贝氏体等温淬火工艺对残余奥氏体在拉伸变形作用下与裂纹形成及扩展的相互作用进行了研究.利用扫描电子显微镜(SEM)、透射电镜(TEM)和电子背散射衍射(EBSD)等对试验用钢基体及拉伸后颈缩区进行表征和分析.结果表明,拉伸过程中残余奥氏体细化明显,拉伸断裂后进行组织...  相似文献   

9.
采用XRD和TEM研究了低碳低合金相变诱导塑性(TRIP)钢在单向拉伸状态下的组织转变特性.用Rietveld方法拟合分析了不同应变量下TRIP钢中残余奥氏体(RA)的含量.结果表明,试验中TRIP钢中RA转变量(RA-M)随塑性应变量的增大而增加.TRIP钢变形前的组织为铁素体、贝氏体和残余奥氏体,残余奥氏体主要以晶间薄片状、块状和位于铁素体晶内的细小颗粒状三种形态存在.经拉伸变形后,晶问块状或薄片状RA在应力作用下转变为孪晶结构的马氏体,铁索体晶内的细小颗粒状RA则未发现马氏体相变,但其周围会塞积高密度位错.  相似文献   

10.
利用万能试验机和分离式霍普金森压杆装置(SHPB)对Mn-Si-Cr系Q&P钢分别进行了准静态和动态压缩试验。在应变速率为0.001、0.01、0.1 s-1和900、1 500、2 200、3 000 s-1情况下分别得到了准静态和动态压缩真应力-真应变曲线,并利用扫描电子显微镜进行压缩后的显微组织和断口分析,利用X射线衍射仪(XRD)对压缩变形试样进行物相分析。结果表明,准静态和动态压缩变形条件下,试验钢的真应力-真应变曲线均可大致分为弹性变形和塑性变形2个阶段,且没有明显的屈服平台。准静态压缩条件下应变速率强化效果不明显但应变强化效应较显著。动态压缩条件下应变强化效应不明显,但展现出一定的应变速率强化效应。准静态变形后,试样中心区域板条组织倾向沿近水平方向(垂直于压缩方向)定向排布。动态变形后,约有1/3试样发生了断裂,未发生断裂的试样中心出现45°方向剪切带,其附近板条组织发生了“屈曲”。准静态变形后残余奥氏体含量下降明显,而动态压缩试样中,残余奥氏体含量只有略微下降,且块状M/A岛内部出现扭曲变形与开裂,这可能是导致部分试样断裂的诱因。动态压缩破坏试样断口整体呈现45°剪切断裂,一端发生微孔聚集性断裂,另外一端发生剪切断裂。  相似文献   

11.
A nitrogen-strengthened austenitic stainless steel was tested in uniaxial tension at room temperature (295 K) and in liquid nitrogen (76 K). A transition in ductile fracture appearance from a cup-cone fracture at room temperature to shear fracture at cryogenic temperature is observed and correlated to deformation behavior and micromechanisms (void nucleation and strain localization) of fracture. The flow stresses, fracture stresses, and strain hardening rates are all higher at liquid nitrogen temperature compared to those at room temperature, and the significant increases in plastic flow stresses are accompanied by planar deformation mechanisms. At both temperatures, primary void nucleation is observed mainly at scattered, large patches of sigma phase, and initial primary void growth is associated with tensile instability (necking) in the specimen. Postuniform elongation at 295 K leads to secondary void nucleation from small, less than 1 μm in diameter, microalloy particles, leading directly to failure; the strain required for secondary void growth and coalescence is highly localized and does not contribute to macroscopic elongation. At 76 K, uniform strain increases, total strain decreases, and strain localization into shear bands between the primary voids and the surface of the neck leads directly to failure. Secondary void nucleation, growth, and coalescence are limited to shear bands and also do not contribute to the macroscopic elongation. The observations of void nucleation are characterized in terms of a continuum analysis for the interfacial stress at voidnucleating particles. The critical interfacial stress for void nucleation at the lower temperature correlates with the increased flow properties of the matrix.  相似文献   

12.
利用CMT5105电子万能试验机和HTM 16020电液伺服高速试验机对超高强热成形钢进行拉伸试验,应变速率范围为10-3~103 s-1,模拟热成形零件在不同应变速率下的碰撞情况.结果表明:在低应变速率阶段(10-3~10-1 s-1)实验钢的应变速率敏感性不高,随应变速率的升高,实验钢的强度和延伸率变化不大;在高应变速率阶段(100~103 s-1)实验钢具有高的应变速率敏感性,随应变速率的升高,实验钢的强度和延伸率都呈增大的趋势,并且抗拉强度的应变速率敏感性要大于屈服强度.这主要是由于在高应变速率阶段拉伸时产生的绝热温升现象和应变硬化现象共同作用造成的.实验钢颈缩后的延伸率随应变速率的增大而减小,主要是由于高应变速率下马氏体局部变形不均匀造成的.实验钢吸收冲击功的能力随应变速率的升高而增大,实验钢达到均匀延伸率时吸收冲击功的大小对应变速率更敏感.与低应变速率阶段相比,实验钢在高应变速率阶段的断口韧窝的平均直径更小,韧窝的深度更深,这与高应变速率阶段部分马氏体晶粒的碎化有关.通过扫描电镜和透射电镜观察发现,在高应变速率拉伸时晶粒有明显的拉长趋势,并且在应力集中的地方有一些微空洞的存在,应变速率为103 s-1时部分区域有碎化的现象.   相似文献   

13.
This paper investigates the dynamic elongation at fracture of conventional steels, advanced high strength steels and nonferrous metals, such as aluminium and magnesium alloys. Dynamic tensile tests were carried out using a high speed material testing machine at various strain rates ranging from 0.001/s to 200/s. The results show that the elongation at fracture of sheet metals does not simply decrease with the increase of the strain rate. The elongation of SPCC, SPRC450R, TRIP600 and AZ31 decreases when the tests are carried out under the quasi‐static state at the strain rate of 0.1/s, but increases again when the tests are carried out at the strain rate of 0.1/s up to the strain rate of 200/s. Furthermore, DP600 and AA7003‐T7 show the tendency that the tensile elongation increases as the strain rate increases. This tendency is related to the microstructure and forming history of the sheet metal. It is concluded that localized strain rate hardening in the necking region induces the enlargement of the necking region and thus the increased elongation. This phenomenon is worth being considered to predict the fracture of sheet metal products in high speed sheet metal forming.  相似文献   

14.
A study of high temperature deformation of a commercial aluminum alloy has been undertaken through tensile tests at strain rates ranging from 5.6 × 10-5 s-1 to 5.6 × 10-2 s-1 and load relaxation testing in the temperature range 473 to 873 K. Experiments have established that maximum ductility is reached at about 623 K and at maximum strain rates. Maximum fracture ductility corresponds to minimum uniform elongation. The deformation and fracture mechanisms operating in the temperature range 473 to 573 K seem to differ from those between 623 K and 823 K; different strain rate sensitivities are also observed. Dynamic recovery is the dominant softening mechanism in high temperature plastic deformation—that is, a thermally activated process whose kinetics can be suitably described by an empirical power relation.  相似文献   

15.
The temperature rise in a sheet tensile specimen has been calculated by the finite difference method for a plain-carbon steel at various strain rates and in several environments. Prior to necking, a uniform heat generation function is used with the governing flow equation while during the post-uniform strain, an empirical heat generation function is used. The empirical function is based on a strain distribution equation generated by curve fitting of experimental data. The effect of heat transfer conditions on the temperature increase has been discussed. The maximum temperature rise in air may reach 42 K at the center of an I.F. steel specimen at a strain rate of 10-2/s. The instability strain during tensile testing has been predicted by taking into account strain hardening, strain-rate hardening, and deformationinduced heating. The results show that significant deformation heating can occur during tensile testing in air at “normal” strain rates near 10-2/s, and that the uniform elongation can be affected markedly. Predictions for other alloys based on tabulated data are also presented.  相似文献   

16.
A study of high temperature deformation of a commercial aluminum alloy has been undertaken through tensile tests at strain rates ranging from 5.6×10−5 s−1 to 5.6×10−2 s−1 and load relaxation testing in the temperature range 473 to 873 K. Experiments have established that maximum ductility is reached at about 623 K and at maximum strain rates. Maximum fracture ductility corresponds to minimum uniform elongation. The deformation and fracture mechanisms operating in the temperature range 473 to 573 K seem to differ from those between 623 K and 823 K; different strain rate sensitivities are also observed. Dynamic recovery is the dominant softening mechanism in high temperature plastic deformation—that is, a thermally activated process whose kinetics can be suitably described by an empirical power relation.  相似文献   

17.
The temperature rise in a sheet tensile specimen has been calculated by the finite difference method for a plain-carbon steel at various strain rates and in several environments. Prior to necking, a uniform heat generation function is used with the governing flow equation while during the post-uniform strain, an empirical heat generation function is used. The empirical function is based on a strain distribution equation generated by curve fitting of experimental data. The effect of heat transfer conditions on the temperature increase has been discussed. The maximum temperature rise in air may reach 42 K at the center of an I.F. steel specimen at a strain rate of 10-2/s. The instability strain during tensile testing has been predicted by taking into account strain hardening, strain-rate hardening, and deformationinduced heating. The results show that significant deformation heating can occur during tensile testing in air at “normal” strain rates near 10-2/s, and that the uniform elongation can be affected markedly. Predictions for other alloys based on tabulated data are also presented.  相似文献   

18.
A considerable enhancement of the tensile ductility in a commercial Al-4 pct Mg alloy is observed during deformation at elevated temperatures (up to 250°C) and slow strain rates. Total elongations of ∼175 pct at 250°C were obtained compared to 27 pct at ambient temperature. Much of this ductility was a result of large increases with temperature in the post uniform or diffuse necking strain. Measurements of strain rate sensitivity,m, as a function of strain, strain rate, and temperature showed thatm near fracture was linearly related to total elongation. The mechanisms controllingm in this Al-4 pct Mg alloy were dynamic strain aging at the lower temperature range and dynamic recovery at the higher temperatures.m was found to be a function of strain only when the relative fraction of dynamic recovery was greater than ∼35 pct. A comparison ofm as measured in pure aluminum and in the commercial Al-4 pct Mg alloy suggests that Mg additions can significantly increasem during dynamic recovery.  相似文献   

19.
The basic failure behavior of austenitic iron has been established for the temperature range 950 to 1350°C and the strain-rate range 2.8 x 10-5 to 2.3 x 1(10-2 s-1. Failure in zone-refined iron is determined solely by plastic deformation, leading first to multiple necking, continuing by the exclusive growth of a single neck, and concluding by separation at a point within that neck. With the increasing impurity content of electrolytic iron, Fe-0.05 C and Fe-5.2 Mn, this failure process is interrupted at the lower temperatures by fracture at either second-phase particles or grain boundaries. The regimes of these two fracture modes have been determined as functions of strain rate, deformation temperature, and annealing temperature. Recrystallization is prevalent during the plastic deformation of austenitic iron and influences the necking process to some extent. Recrystallization is more influential as a means of stabilizing arrays of intergranular cracks, thereby allowing the cracks to undergo appreciable plastic deformation during the final stage of failure. The concept of failure diagrams is introduced as a simple means of representing the complex interposition of plastic instability, recrystallization, and fracture during the failure process.  相似文献   

20.
The basic failure behavior of austenitic iron has been established for the temperature range 950 to 1350°C and the strain-rate range 2.8 x 10-5 to 2.3 x 1(10-2 s-1. Failure in zone-refined iron is determined solely by plastic deformation, leading first to multiple necking, continuing by the exclusive growth of a single neck, and concluding by separation at a point within that neck. With the increasing impurity content of electrolytic iron, Fe-0.05 C and Fe-5.2 Mn, this failure process is interrupted at the lower temperatures by fracture at either second-phase particles or grain boundaries. The regimes of these two fracture modes have been determined as functions of strain rate, deformation temperature, and annealing temperature. Recrystallization is prevalent during the plastic deformation of austenitic iron and influences the necking process to some extent. Recrystallization is more influential as a means of stabilizing arrays of intergranular cracks, thereby allowing the cracks to undergo appreciable plastic deformation during the final stage of failure. The concept of failure diagrams is introduced as a simple means of representing the complex interposition of plastic instability, recrystallization, and fracture during the failure process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号