首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
对超快冷条件下X80管线钢屈强比的影响因素进行了系统研究;结合光学电镜、扫描电镜和透射电镜对冲击断口和组织的观察,得出了超快冷条件下低屈强比X80管线钢强韧性匹配的最优工艺.结果表明:随着超快冷终止温度的降低,实验钢强度和屈强比均呈升高趋势;超快冷终止温度为655℃时,实验钢组织由针状铁素体、贝氏体和M/A岛组成,强韧性匹配良好;在"超快冷+空冷+层流冷却"的冷却模式下,随着空冷时间的延长,实验钢的屈强比逐渐降低;超快冷的应用在提高实验钢强度的同时有利于实现X80管线钢的低屈强比,为高级别的抗大变形管线钢的开发奠定了基础.  相似文献   

2.
基于热连轧生产线开发了X65管线钢超快冷新工艺,系统表征了该工艺下实验钢的微观组织特征,并进一步讨论了其强化机制.结果表明,超快冷下X65管线钢微观组织为细小针状铁素体(AF)+准多边形铁素体(QPF)+M/A岛+弱化珠光体(DP)混合组织,有效晶粒尺寸为2.93μm,大角晶界百分比为31.5%;实验钢组织亚结构为细小的块状铁素体,铁素体尺寸分布在200~1000nm;在铁素体基体上析出了大量尺寸<10nm的Nb(C,N)粒子;实验钢各项力学性能均满足API SPEC 5L标准要求.超快冷工艺下X65管线钢的主要强化机制为细晶强化、固溶强化、位错强化及纳米析出强化的耦合强化,其中纳米析出强化强度贡献值为96.1MPa.  相似文献   

3.
热轧带钢轧后冷却控制系统优化   总被引:1,自引:0,他引:1  
为提高热轧带钢超快冷出口温度和卷取温度控制精度,针对超快冷生产调试过程中出现的问题,对轧后冷却控制系统进行了优化.针对超快冷出口纵向温度偏差较大的问题,提出超快冷换热系数多点自学习方法;采用有限差分方法,分析带钢超快速冷却后的返红现象,并在此基础上提出一种超快冷出口返红补偿方法;提出了对进入冷却区的带钢样本段进行温度再计算的方法,来消除速度波动对轧后冷却温度控制精度的影响.现场应用结果表明,优化后超快冷出口温度和卷取温度控制精度均明显提高.  相似文献   

4.
采用超快冷与层流冷却相结合的冷却工艺对厚度为12.7 mm的X70管线钢进行轧制,分析讨论不同超快冷终冷温度下实验钢的微观组织及马氏体-奥氏体(M/A)岛演变规律,并进一步给出实验钢的最佳轧制工艺参数。研究结果表明:当超快冷终冷温度在570~360℃范围内时,实验钢组织可归类为:1)准多边形铁素体(QF)+贝氏体铁素体(BF)+针状铁素体(AF)+M/A岛;2)AF+BF+M/A岛;3)AF+BF+板条贝氏体(LB)+M/A岛。随着超快冷终冷温度由570℃降至440℃,M/A岛所占面积百分比变化不大,M/A岛长度减小;随着超快冷终冷温度进一步降至360℃,M/A岛长度变化不大但体积分数降低。当超快冷终冷温度为440℃时,实验钢拉伸性能及低温韧性最优。针对实验用X70管线钢,控制冷却最佳工艺制度为终轧830℃+超快冷却至410~470℃+层流冷却至320~370℃+卷取。  相似文献   

5.
为了保证CSP热轧双相钢后段超快速冷却生产的稳定及产品组织的均匀性,需实现带钢生产过程中冷却水压力的高精度控制.结合包钢CSP后置超快冷设备和工艺特点,针对带钢冷却过程中集管压力波动问题,分别设计了动力泵压力闭环与溢流阀模糊控制的联合控制法及动力泵压力闭环与溢流阀压力闭环联锁控制法.实际应用效果表明,采用该控制方案,带钢冷却过程中头尾段集管压力控制在0.85±0.05 MPa,带钢中间段集管压力控制在0.85±0.01 MPa,实现了低成本热轧双相钢后段超快冷过程供水压力的高精度控制,很好地满足了该厂CSP热轧双相钢的生产需求.  相似文献   

6.
研究了14.2 mm X70管线钢轧后经超快冷+层流冷却、层流冷却两种冷却制度后的显微组织及力学性能,讨论了超快冷+层流冷却下实验钢强韧化机制.结果表明:两种冷却制度下实验钢力学性能均满足API SPEC 5L X70要求,超快冷+层流冷却下实验钢强度、塑性及韧性较高,综合力学性能良好;不同冷却制度下显微组织均为贝氏体铁素体+针状铁素体+M-A岛混合组织,其中超快冷+层流冷却下针状铁素体、M-A岛组织更加细化;超快冷+层流冷却下实验钢主要强韧化机制为细晶强化与纳米析出强化;实验钢理想轧后冷却工艺为:820~840℃终轧+超快冷至450~500℃+层流冷却至350~400℃+卷取.  相似文献   

7.
结合某现场超快速冷却系统,具体分析了带钢运行速度变化对轧后冷却过程换热系数与冷却时间的影响规律.根据速度运行机制,开发了速度在线修正计算策略,实现了轧后冷却区带钢速度计算值与实际值的吻合;并在此基础上开发的工艺温度在线循环计算策略,消除了速度波动对温度控制的影响,提高了温度控制精度.将该温度在线实时修正策略应用于现场,实现了超快冷出口温度与卷取温度的精确控制,工艺温度命中率在96%以上,有效消除速度对温度波动的影响,完全满足新产品、新工艺的工业化试制及大批量生产.  相似文献   

8.
采用Gleeble3500热力学模拟试验机对X120管线钢进行双道次热压缩变形试验,分析了其压缩过程的应力-应变曲线,在850℃以1 s-1的应变速率,变形量为30%进行变形时,可发生动态再结晶.该文着重探讨了控轧控冷工艺参数对X120管线钢显微组织,力学性能的影响规律,在快冷的条件下可以得到目标组织-细小的板条组织(LB),试验钢的力学性能随着冷却速度的增加而呈现增大的趋势.  相似文献   

9.
采用不同的控轧控冷工艺研究了未再结晶区变形量、冷却速度和终冷温度等轧制工艺参数对X120管线钢碳氮化物析出的影响,并根据Orowan机制对析出相强度贡献量进行了理论估算.结果表明:轧制工艺的变化对析出相的类型与相结构没有影响;提高未再结晶区变形量主要可促进铌的析出,并有利于提高X120管线钢的屈服强度;冷却速度和终冷温度对X120管线钢碳氮化物析出的影响较小.  相似文献   

10.
X80管线钢的组织与性能研究   总被引:4,自引:0,他引:4  
利用光学显微镜、扫描电镜、透射电子显微镜等对X80级别管线钢的组织与性能进行了研究.实验结果表明,通过控轧控冷工艺轧制的16 mm厚的X80管线钢的屈服强度达到670 MPa以上时,其屈强比低于0.85,韧脆转变温度低于-60℃,达到了很好的强韧性匹配.细化的针状铁素体有效地改善了实验钢的强度及韧性.X80管线钢中存在两种典型的析出物,一种以Nb,Ti(CN)为主,尺寸较大(50~200 nm);另一种以NbC为主,尺寸细小(小于30 nm).这些纳米级析出物对钢的组织细化和强化起到了重要作用.  相似文献   

11.
采用OM、TEM和EMPA方法对比研究了超快冷工艺及终轧温度对355 MPa级钢板心部异常带状组织的影响.结果表明,950℃高温终轧及超快冷钢板(UC1钢)心部带状组织完全消失,900℃终轧及超快冷钢板(UC2钢)心部则形成了微弱带状组织,而轧后15℃/s层流冷却钢板(LC钢)心部则形成了包括马氏体/奥氏体低温相的严重带状组织.热力学计算显示,钢板心部偏析降低铁素体相变温度144℃,从而提高消除带状组织所需临界冷速到8℃/s.温度计算得到UC1和UC2钢板心部冷速分别达12.1和13.4℃/s,而LC钢板心部冷速只有5.5℃/s,表明超快冷足以抑制心部带状组织,但降低终轧温度削弱了这个效果,而层流冷速则无法抑制带状组织.  相似文献   

12.
对H型钢超快速冷却设备作了简要介绍.通过基础自动化中信号传递和液压缸的协同工作,使超快冷系统能适应不同规格H型钢的冷却要求.根据钢种开发及生产工艺要求,针对超快速冷却过程,建立了空冷和水冷温降模型.通过模块化设计,实现了过程温度的控制;通过模型自学习,使超快速冷却工艺逐步合理.从运行情况来看,腹板和翼缘温度差值可以降至30℃,协同工作的两个液压缸中磁尺数值大致吻合,从而使超快速冷却系统具有良好的可控性以及高精度和低故障率.  相似文献   

13.
考虑到传统层流冷却装置的冷却能力低、冷却均匀性差,无法满足中厚板低成本减量化的生产需求,因此开发出超快速冷却装置.超快速冷却装置的喷嘴与钢板的距离较近,以一定的角度沿轧制方向将一定压力的水喷射到板面,将板面残存水与钢板之间形成的气膜吹扫掉,从而达到钢板和冷却水之间的完全接触,实现核沸腾,进而大幅度提高冷却效率和冷却均匀性.将超快速冷却装置应用于国内某宽厚板生产线,并在此冷却装置上开发出低成本管线钢.与传统层流冷却装置生产的管线钢相比,采用超快冷工艺可大幅降低管线钢的合金含量并提高板形合格率.  相似文献   

14.
通过热模拟试验机研究了V-N微合金钢过冷奥氏体动态连续冷却相变行为,设计了V-N微合金化X80抗大变形管线钢的轧制与冷却工艺参数并分析了组织和力学性能的关系.结果表明,动态CCT曲线出现高温转变区和中温转变区分离的现象,转变温度范围分别是637~728℃和441~601℃,当冷速为10~20℃/s时,形成针状铁素体为主的组织.V-N微合金化管线钢组织以多边形铁素体和针状铁素体为主,屈服强度、抗拉强度、均匀延伸率和-20℃夏比冲击功分别为603MPa,724MPa,11.1%和214J,满足API Spec 5L对X80管线钢的力学性能要求,同时具有好的强塑性匹配.  相似文献   

15.
X80管线钢的研究与应用   总被引:1,自引:0,他引:1  
基于长距离高压油气输送管道建设的需要,高强度高韧性管线用钢得到迅速发展。X80管线钢正是在这种背景下被开发出来的。由于其具有优良的强度和低温韧性,良好的焊接性能与抗腐蚀性能,可以有效节约工程建设费用,同时降低管道运行维护成本,因此X80管线钢正在全球范围内得到越来越广泛的应用。论述了X80管线钢的应用情况、化学成分特点、显微组织及强韧性能,介绍了TMCP(热机械控制)工艺在X80管线管生产中的应用。  相似文献   

16.
采用TMCP热轧及轧后两阶段控制冷却技术,在试验室制备了含Mo成分的X80级抗大变形管线钢,并利用扫描电镜和透射电镜等分析方法研究了不同冷却条件对组织与性能的影响.结果表明,采用两阶段控制冷却工艺的含Mo成分X80抗大变形管线钢为铁素体-贝氏体双相组织;随加速冷却中开冷温度降低,组织中铁素体含量增加,试样强度降低,屈强比降低,均匀伸长率提高;随加速冷却中终冷温度降低,贝氏体中M/A含量减少,尺寸更细小,分布更分散,试样强度变化不大但均匀伸长率显著提升.分析表明,当铁素体含量一定时,均匀伸长率与贝氏体中M/A密切相关,细小且均匀分布的M/A可提高加工硬化速率,推迟颈缩发生,使均匀伸长率升高.当加速冷却中开冷温度为690℃、终冷温度为450℃时,组织中铁素体的体积分数约为23%、晶粒尺寸约为5μm,M/A岛尺寸约为1μm,组织均匀性良好,试样得到最优的强度塑性匹配.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号