首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 250 毫秒
1.
针对热轧带钢超快速冷却过程温度控制,通过建立带钢冷却过程中的空冷、水冷温降模型,采用前馈、反馈与自适应相结合的温度控制策略,提高带钢的中间温度和卷取温度的控制精度,并应用于热轧带钢生产线。应用效果表明,带钢轧后温度控制达到了较高的精度,并有效地提高了带钢的力学性能。  相似文献   

2.
结合某现场超快速冷却系统,具体分析了带钢运行速度变化对轧后冷却过程换热系数与冷却时间的影响规律.根据速度运行机制,开发了速度在线修正计算策略,实现了轧后冷却区带钢速度计算值与实际值的吻合;并在此基础上开发的工艺温度在线循环计算策略,消除了速度波动对温度控制的影响,提高了温度控制精度.将该温度在线实时修正策略应用于现场,实现了超快冷出口温度与卷取温度的精确控制,工艺温度命中率在96%以上,有效消除速度对温度波动的影响,完全满足新产品、新工艺的工业化试制及大批量生产.  相似文献   

3.
为了提高热轧带钢卷取温度控制精度,针对热轧带钢轧后冷却过程非线性、强耦合性等特性,建立了具有非线性结构特征的热轧带钢轧后冷却过程控制的温度数学模型,并对热轧带钢轧后冷却过程卷取温度的设定策略进行了研究,同时在该模型基础上开发了系统软件,通过现场实际应用对模型功能进行了验证.结果表明,该冷却数学模型的卷取温度设定计算结果...  相似文献   

4.
热连轧控冷过程卷取温度精度的优化   总被引:3,自引:0,他引:3  
控制冷却是热带钢轧后工艺处理中的关键技术,而卷取温度的精度又是冷却过程控制的核心·结合某热连轧厂控冷层流系统的改造,通过分析原有系统运行时对于厚带钢冷却能力不足、设定精度及纵向温度控制均匀性较差、冷却速率的控制策略单一、更换钢种组别时头几块钢的设定精度较差等方面的原因,在改造过程中有针对性地对冷却装置、冷却控制策略、数学模型进行改进,同时加强了控冷过程机模型自适应的能力,并开发了解析工具用于优化模型参数,提高了卷取温度过程控制的精度·  相似文献   

5.
热轧带钢轧后冷却控制及其自学习方法   总被引:2,自引:0,他引:2  
热轧带钢轧后冷却过程中卷取温度的控制精度是保证带钢表面质量和板形良好的一个关键因素,因此温度控制精度的核心是冷却过程控制模型的建立,同时新的数学模型应该具有自学习功能以提高控制精度.以此为出发点,建立了具有非线性结构特征的热轧带钢冷却过程控制的数学模型,并对新模型的自学习能力进行了研究,使该模型能够不断地修正其关键参数以提高温度控制精度,从而增强了模型的自适应性.通过对该冷却过程数学模型的现场实际应用,验证了该冷却数学模型的卷取温度控制能够达到较高的精度,为提高带钢产品质量奠定了基础.  相似文献   

6.
针对X80管线钢超快冷生产过程,基于传热学基本理论,建立了超快冷温度控制模型.通过对带钢超快冷过程温度场模拟,开发了X80管线钢超快冷控制策略,得出超快冷以均匀模式开启初始组态并采用正向增开策略有利于超快冷精度的提高及带钢芯表温差的减小.针对工艺条件波动对控制精度的影响,开发了超快冷自适应系统,实现了带钢超快冷出口温度实时及卷间修正.现场应用取得良好效果,为控冷工艺的实施提供支撑.  相似文献   

7.
在热轧带钢生产过程中,卷取温度是影响成品带钢性能的重要参数之一,其精度的高低对带钢质量至关重要.为保证产品具有良好的性能,采用层流冷却装置对热轧后的板带进行冷却控制,喷水系统的设定是层流冷却过程控制的关键.在冷却过程中带钢的温度不能在线连续检测,其过程具有强非线性和时变性,而且在冷却过程中存在相变,因此难以建立精确的数学模型去描述这一冷却过程.随着带钢厚度,精轧出口温度和轧制速度的变化,单独的前馈/反馈控制很难满足高精度的温度控制需要.在本文的研究中,一系列层流冷却控制策略被采用,包括前馈/反馈控制,自适应算法,以及控制带钢整体温度的均匀性策略.实践应用表明这些控制策略得到很好的检验,能有效地提高卷取温度的控制精度和均匀性.  相似文献   

8.
热轧层流冷却系统优化与模型参数自适应   总被引:2,自引:1,他引:1  
针对热轧带钢卷取温度控制的不确定性和时变性, 利用系统优化与模型参数的自适应控制热输出辊道上带钢温度. 从控制模式、冷却策略、段跟踪和模型的再计算以及学习系数的读取等方面对系统进行了优化. 根据实际工艺状况, 实时采集现场数据对层冷模型中的参数进行自适应调整, 并就组别分类、空冷/水冷系数的回归分析进行了研究. 实践结果表明: 采用这种方法能满足现场需要, 卷取温度控制精度较高, 基本在-15~15 ℃范围内;控制效果和带钢性能良好.  相似文献   

9.
卷取温度是影响带钢组织性能的重要工艺参数.在生产实践中,如何提高厚规格带钢卷取温度的控制精度是一个难点.针对厚规格带钢在层流冷却过程中的工况特点,提出了温度场计算模型和对流换热系数模型的改进方法,并开发了一种全新的基于相似策略的自适应模型,以改善卷取温度前馈控制效果.经现场应用证明,本文提出的方案能有效提高厚规格带钢的卷取温度控制精度,其中厚度大于12 mm的带钢平均命中率可达到94.9%.  相似文献   

10.
对热轧板带钢超快速冷却设备作了简要介绍.通过带钢轧制过程参数耦合控制及冷却水精度设定,使冷却水流量快速调节实现目标值±0.5m3/h的偏差.根据热轧生产工艺制度要求,对超快速冷却过程建立温度计算数学模型.通过控制系统功能间的最优化设计,采取合理的冷却策略,使中间温度及卷取温度控制精度达到目标值±15℃范围之内,使热轧板带钢超快速冷却工艺逐步稳定合理.系统投入使用后,具有高稳定性、高可靠性、高温度命中率,显著提高了带钢产品的质量和性能.  相似文献   

11.
用有限元法模拟热轧带钢层流冷却中的温度场并计算典型位置处的冷却速度.分析水冷期间和随后返红过程冷却速度周期性变化规律,发现在轧件横断面厚度方向上距离表面大约半厚度的1/3处存在一条冷却速度临界线;在临界线与表面之间冷却速度有正负交替现象;此临界线是冷却过程中瞬时内部热输出区与热输入区(返红区域)的分界线;在返红区域回归出返红温度随经历时间和各点到表面距离的变化规律的关系模型.此研究为组织性能预测和控制提供了参考数据.  相似文献   

12.
轧后冷却过程中,卷取温度对带钢最终的微观组织和力学性能有重要影响。针对带钢轧后的层流冷却过程,分别采用有限差分法和有限元法,建立了带钢厚度方向的温度场模型,并将模型计算值与实测值进行对比。结果表明,两种方法建立的模型均能较准确地反映层流冷却过程中带钢的瞬态温度分布,为进一步分析带钢的微观组织转变和力学性能提供了依据。  相似文献   

13.
为了保证CSP热轧双相钢后段超快速冷却生产的稳定及产品组织的均匀性,需实现带钢生产过程中冷却水压力的高精度控制.结合包钢CSP后置超快冷设备和工艺特点,针对带钢冷却过程中集管压力波动问题,分别设计了动力泵压力闭环与溢流阀模糊控制的联合控制法及动力泵压力闭环与溢流阀压力闭环联锁控制法.实际应用效果表明,采用该控制方案,带钢冷却过程中头尾段集管压力控制在0.85±0.05 MPa,带钢中间段集管压力控制在0.85±0.01 MPa,实现了低成本热轧双相钢后段超快冷过程供水压力的高精度控制,很好地满足了该厂CSP热轧双相钢的生产需求.  相似文献   

14.
中厚板控制冷却数学模型   总被引:16,自引:0,他引:16  
介绍了中厚板控制冷却过程中所用的数学模型,包括差分模型、空冷和水冷换热系数模型、比热和热传导率模型,并采用有限差分法模拟计算了钢板在冷却过程中厚度、宽度方向上的温度场分布,以及间歇冷却对控制冷却的影响·从模拟结果可以看出,返红时间、厚度上温度梯度随钢板厚度增加而增加;间歇冷却时钢板内部温度呈均匀下降,表面不断冷却与返红过程·在线应用证明该套数学模型计算精度较高,可以满足现场实际生产的要求·  相似文献   

15.
热连轧层流冷却系统速度前馈补偿的优化   总被引:1,自引:0,他引:1  
结合现场情况介绍了热轧带钢层流冷却设备和控制系统的数学模型,其中数学模型主要包括空冷模型、水冷模型、反馈控制模型和自学习模型.由于某热轧厂采用非匀速轧制工艺制度,带钢在冷却区内既有较大升速又有较大降速,原层流冷却系统不能够适应轧制速度的变化而影响卷取温度控制精度,故需针对轧制速度的变化进行速度前馈补偿控制;从过程自动化...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号