首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The first mirror (FM) samples made of polycrystal (PC) stainless steel (SS), molybdenum (Mo) and tungsten (W) were mounted at different locations in HT-7 tokamak to investigate the surface modifications caused by erosion and deposition. The optical transmission characteristics of first mirror samples were measured by a spectrophotometer. It was found that different irradiation environment had different influences on the first mirror surfaces, especially with wave antenna nearby. In addition, the erosion made the reflectivity of FM degrade to some extents as a whole. But the deposition on the mirror influences more than erosion does. Comparing the mirrors of SS, W and Mo, irradiated in the same environment, the W-mirror had the least changes in reflectivity with regularity, while the SS-mirror had most serious changes.  相似文献   

2.
The polymer treatment with a low-temperature plasma jet generated on the atmospheric pressure surface discharge (SD) plasma is performed. The change of the surface property over time, in comparison with low pressure oxygen (O2) plasma treatment, is examined. As one compares the treatment by atmospheric pressure plasma to that by the low pressure O2 plasma of PS (polystyrene) the treatment effects were almost in complete agreement. However, when the atmospheric pressure plasma was used for PP(polypropylene), it produced remarkable hydrophilic effects.  相似文献   

3.
Doped graphite GBST1308, mechanically jointed to CuCrZr alloys, will be applied on EAST superconducting as plasma facing material (PFM). Two joint structures called joint-1 and joint-2 were evaluated by means of thermal response tests using electron beam facility. The experimental results showed that the temperature differences of two joints were not significant, and the maximum surface temperature was about 1055℃ at a load of 4 MW/m^2, which had a good agreement with the simulated results by ANSYS code. The results indicated that the doped graphite GBST1308/CuCrZr mock-up can withstand heat flux deposition of 4 MW/m^2 except at the screw-fastened region, and joint-2 could be more suitable to higher heat flux region such as divertor target. But under the higher heat flux, both joints are unacceptable, an advanced PFM and its integration with the heat sink have to be developed, for example, vacuum plasma spraying tungsten coatings on the CuCrZr might be a good choice.  相似文献   

4.
An electromagnetic calculation and the parameters of the magnet system of the magnetically confined plasma rocket were established. By using ANSYS code, it was found that the leakage rate depends on the current intensity of the magnet and the change of the magnet position.  相似文献   

5.
The effect of a high frequency (HF) electric field on the propagation of electrostatic wave in a 2D non-uniform relativistic plasma waveguide is investigated. A variable separation method is applied to the two-fluid plasma model. An analytical study of the reflection of electrostatic wave propagation along a magnetized non-uniform relativistic plasma slab subjected to an intense HF electric field is presented and compared with the case of a non relativistic plasma. It is found that, when the frequency of the incident wave is close to the relativistic electron plasma frequency, the plasma is less reflective due to the presence of both an HF field and the effect of relativistic electrons. On the other hand, for a low-frequency incident wave the reflection coefficient is directly proportional to the amplitude of the HF field. Also, it is shown that the relativistic electron plasma leads to a decrease in the value of reflection coefficient in comparison with the case of the non relativistic plasma.  相似文献   

6.
To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire- to-cylinder reactor were 1.02×10^-9 mol/L and 0.61×10^-9 mol/L, respectively. In the point-to- plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7×10^-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5×10^-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p- benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were elucidated in light of the ana  相似文献   

7.
As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.  相似文献   

8.
Thermal plasma technology provides a stable and long term treatment of mixed wastes through vitrification processes. In this work, a transferred plasma system was realized to vitrify mixed wastes, taking advantage of its high power density, enthalpy and chemical reactivity as well as its rapid quenching and high operation temperatures.
To characterize the plasma discharge, a temperature diagnostic is realized by means of optical emission spectroscopy (OES). To typify the morphological structure of the wastes samples~ scan- ning electron microscopy (SEM), and X-ray diffraction (XRD) techniques were applied before and after the plasma treatment.  相似文献   

9.
CrN films have been synthesized on Si(100) wafer by inductively coupled plasma (ICP)-enhanced radio frequency (RF) magnetron sputtering. The effects of ICP power on microstructure, crystal orientation, nanohardness and stress of the CrN films have been investigated. With the increase of ICP power, the current density at substrate increases and the films exhibit denser structure, while the DC self-bias of target and the deposition rate of films decrease. The films change from crystal structure to amorphous structure with the increase of ICP power. The measured nanohardness and the compressive stress of films reach the topmost at ICP power of 150 W and 200 W, respectively. The mechanical properties of films show strong dependence on the crystalline structure and the density influenced by the ICP power.  相似文献   

10.
Parametrical effect on plasma discharge and beam extraction in the diagnosis neutral beam (DNB) system for HT-7 tokamak was studied experimentally. Useful results with an improved beam quality were obtained.  相似文献   

11.
In this study, SiOx films were deposited by a dielectric barrier discharge (DBD) plasma gun at an atmospheric pressure. The relationship of the film structures with plasma powers was investigated by Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). It was shown that an uniform and cross-linking structure film was formed by the DBD gun. As an application, the SiOx films were deposited on a carbon steel surface for the anti-corrosion purpose. The experiment was carried out in a 0.1 M NaCl solution. It was found that a very good anti-corrosive property was obtained, i.e., the corrosion rate was decreased c.a. 15 times in 5% NaCl solution compared to the non-SiOx coated steel, as detected by the potentiodynamic polarization measurement.  相似文献   

12.
In this paper a simple code has been developed to analyze power balance and qualitatively evaluate current profiles for discharges with lower hybrid current drive (LHCD) and ion Bernstein wave (IBW) heating in the HT-7 tokamak. Electron and ion thermal diffusivity, profiles of the bootstrap current density and total plasma current density can be estimated by this code using the experimental data. This code offers an easy and reasonable means to understand plasma transport in HT-7.  相似文献   

13.
A mass of nanoparticles/nanorods were formed on a simultaneously deposited gran- ular film by plasma enhanced chemical vapor deposition (PECVD) of perfluorohexane at atmo- spheric pressure without any catalysts or templates. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology and the chem- ical compositions of nanoparticles. The average size of particles is about 100 nm and the length of synthesized nanorods is between 1 μm and 2.5/tm. The analyses of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction(SAED) and X-ray diffraction (XRD) reveals that the nanoparticles and nanorods are crystalline.  相似文献   

14.
Chemically vapor deposited diamond films were etched at different parameters using oxygen plasma produced by a DC (direct current) glow discharge and then polished by a modified mechanical polishing device. Scanning electron microscope, atomic force microscope and Raman spectrometer were used to evaluate the surface states of diamond films before and after polishing. It was found that a moderate plasma etching would produce a lot of etch pits and amorphous carbon on the top surface of diamond film. As a result, the quality and the efficiency of mechanical polishing have been enhanced remarkably.  相似文献   

15.
The in-situ measurements of the ionospheric plasma that we use come from two instruments of the scientific payload of the satellite DEMETER; the plasma analyser IAP (Instrument d'analyse du plasma) and the Langmuir probe ISL (Instrument Sonde de Langmuir). DEMETER is a micro-satellite realized by the CNES(Centre National d'Etudes Spatiales, France) with a principal objective to seek a possible influence of the seismic activity on the electromagnetic waves in the ionosphere and on the ionospheric plasma. The satellite was placed on June 29, 2004, in a circular and quasi helio-synchronous orbit at -710 km altitude. The experiments function primarily at mid-latitudes (from +60° to -60°). The IAP data were analysed to deduce the ion population (densities of the dominant ions, i.e. generally O^+, H^+ and He^+) therefore the total ion density. The use of data IAP thus requires some precaution to make sure that the electric equilibrium conditions of the satellite, such as the satellite potential (Фsat), are obtained during the treatment of routine, does not induce an error of measurement. When this potential is negative, the minority light ions H^+ and He^+ can be measured in a reliable way when their proportion is above 3% to 5% of that of O^+. The critical limitation is: under certain conditions, the satellite potential becomes positive and reach a value about -0.5 V so that it becomes impossible to measure H^+ ions. This is likely to involve a significant error on the composition and the density of the plasma. Therefore we carried out a calibration to estimate the missing density. The ISL experiment (Langmuir probe) provided the collected current/polarized tension characteristics of a cylindrical probe from which both electron density Ne and temperature Te were obtained. In some situations it is necessary to examine the accuracy of the electron density using another technique, for instance the high frequency (HF) spectrogram, provided by ICE (instrument champ  相似文献   

16.
Application of plasma chemistry for gas cleaning is gaining prominence in recent years, mainly from an energy efficiency point of view. In this paper we conducted a comparative study of NO/NOx removal using two different types of dielectric barrier discharge electrodes, wire- cylinder reactor, pipe-cylinder reactor. Investigations were first carried out with synthetic gases to obtain the baseline information on the NO/NOx removal with respect to the two geometries studied. Further, experiments were carried out with raw diesel exhaust under loaded condition. A high NOx removal efficiency of 90% was observed for the pipe-cylinder reactor as compared to that of 53.4% for the wire-cylinder reactor. Furthermore, for the same energy consumed per NO molecule (about 73 eV/NO molecule), the removal efficiency increased from 67% for the wire- cylinder to about 98% for the pipe-cylinder which was quite appreciable.  相似文献   

17.
Electric discharge in water can generate a large number of oxidants such as ozone, hydrogen peroxide and hydroxyl radicals. In this paper, a non-thermal plasma processing system was established by means of pulsed dielectric barrier discharge in gas-liquid phase. The electrodes of discharge reactor were staggered. The yield of H2O2 was enhanced after discharge. The effects of discharge time, discharge voltage, frequency, initial pH value, and feed gas were investigated. The concentration of hydrogen peroxide and ozone was measured after discharge. The experimental results were fully analyzed. The chemical reaction equations in water were given as much as possible. At last, the water containing Rhodamine B was tested in this system. The degradation rate came to 94.22% in 30 min.  相似文献   

18.
To investigate the effect of the rib structure on the discharge characteristics of the plasma display panel, the potential distribution, particles density distribution and ions incident angle distribution were examined by simulation of a two-dimensional particle-in-cell/Monte Carlo collision, with two kinds of rib structure: the stripe rib structure and the Waffle rib structure. The results showed that the distribution of electric potential at the corner of the discharge cell was almost the same for these two rib structures while in the centre there was a difference between these two rib structures. The striation phenomenon could be observed in both cases. The distribution of density also indicated that the striation phenomenon was accompanied by the firing of discharge, and the Waffle rib structure might reduce the density humps. In the cell with a stripe rib structure, the profiles of the surface charge density along the sustained dielectric layer presented a better fluctuating distribution than that in the cell with a Waffle rib structure. The spatial potential and particle density in the discharge bulk showed that the Waffle ribs could weaken the striation phenomenon, which could be explained by the decrease in the particle numbers in the discharge cell. The simulation results of the ion incident angle showed that most ions impacted the sustained dielectric layer in the normal stripe rib cell with an incident angle in the range of 6° to 19° while with the Waffle rib structure the incident angle of most ions was in the range of 4° to 19°. The Waffle rib structure did not affect the angle distribution of incident ions significantly.  相似文献   

19.
ZrN fihns were deposited on Si(111) and M2 steel by inductively coupled plasma (ICP)-enhanced RF magnetron sputtering. The effect of ICP power on the microstructure, mechanical properties and corrosion resistance of ZrN films was investigated. When the ICP power is below 300 W, the ZrN films show a columnar structure. With the increase of ICP power, the texture coefficient (To) of the (111) plane, the nanohardness and elastic modulus of the films increase and reach the maximum at a power of 300 W. As the ICP Power exceeds 300 W, the films exhibit a ZrN and ZrNx mixed crystal structure without columnar grain while the nanohardness and elastic modulus of the films decrease. All the ZrN coated samples show a higher corrosion resistance than that of the bare M2 steel substrate in 3.5% NaCl electrolyte. The nanohardness and elastic modulus mostly depend on the crystalline structure and Tc of ZrN(111).  相似文献   

20.
A one-dimensional radial non-uniform fluid model is employed to study plasma behaviors with special emphasis laid on helicon discharges. The plasma density ne, electron temperature Te, electron azimuthal and radial drift velocities are investigated in terms of the plasma radius rp, magnetic field intensity B0 and gas pressure p0, by assuming radial ambipolar diffusion and negligible ion cyclotron movement. The results show that the magnetic confinement plays an important role in the discharge equilibrium, especially at low pressure, which significantly reduces Te compared with the case of a negligible magnetic field effect, and higher B0 leads to a greater average plasma density. Te shows little variations in the plasma density range of 1011 cm-3- 1013 cm-3 for p0 〈 3.0 mTorr. Comparison of the simulation results with experiments suggests that the model can make reasonable predictions of Te in low pressure helicon discharges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号