首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
An analysis has been made on the discharge plasma coupled with an adsorbent system for NOx removal. The cascaded plasma-adsorbent system may be perceived as a better alternative for the existing adsorbent-based abatement system in the industry. In this study the exhaust is sourced from a diesel generator set. It was observed that better NO removal in a plasma reactor can be made possible by achieving higher average fields and subsequent NO2 removal can be improved using an adsorbent system connected in cascade with the plasma system. The paper describes various findings pertaining to these comparative analyses.  相似文献   

2.
Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment, The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CHa and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly.  相似文献   

3.
Decomposition of toluene was experimentally investigated with various dielectric barrier discharge (DBD) reactors, such as wire-cylinder, wire-plate and plate-to-plate, combined with multi-metal oxides catalyst (Mn-Ni-Co-Cu-Ox/Al2O3) loaded on the cordierite honeycomb and nickel foam, respectively. The effects of some factors including the residence time, reactor configuration and catalyst, upon the toluene destruction were studied. Results revealed that the use of in-plasma catalysis was more helpful to enhancing the DRE (destruction and removal efficiency) and reducing the O3 formation than that of either post-plasma catalysis or plasma alone. It was demonstrated that the wire-plate reactor was favorable for the oxidation reaction of toluene and the nickel foam-supported catalysts exhibited good activity.  相似文献   

4.
Dielectric barrier discharge plasma in air was used to modify glass surface to induce the graft of silane onto the treated surface to increase the possibility of biomolecule immobilization. The plasma treated glass had been characterized by scanning electron microscopy (SEM), Fourier transform infrared attenuated total reflection spectroscopy, X-ray photoelectron spectroscopy (XPS) and surface water contact angle measurement. The validity of grafting silane onto glass surface was approved by the analysis of water contact angle measurement, SEM and XPS. The grafted silane content was measured by visible absorption spectroscopy using acid Orange-7. It is shown that the grafting density of silane for glass samples increases significantly after plasma treatment.  相似文献   

5.
Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow separation a set of compressor cascade was adopted. In order to investigate the modification of the flow structure by the plasma actuator, the flow field was examined non-intrusively by particle image velocimetry measurements in the hump model experiment and by a hot film probe in the compressor cascade experiment. The results showed that the plasma actuator could be effective in controlling the flow separation both over the hump and in the compressor cascade when the incoming velocity was low. As the incoming velocity increased, the plasma actuator was less effective. It is urgent to enhance the intensity of the plasma actuator for its better application. Methods to increase the intensity of plasma actuator were also studied.  相似文献   

6.
A new contact glow discharge electrode employed in this study. Because of the strong field the electrode and the water surface, glow discharge on the surface of water was designed and strength in the small air gap formed by plasmas were generated and used to treat waste water. The electric field distribution of the designed electrode model was simulated by MAXWELL 3D~ simulation software, and the discharge parameters were measured. Through a series of experiments, we investigated the impact of optimal designs, such as the dielectric of the electrode, immersion depths, and curvature radii of the electrode on the generation characteristics of plasmas. In addition, we designed an equipotential multi-electrode configuration to treat a Methyl Violet solution and observe the discoloration effect. The experimental and simulation results indicate that the designed electrodes can realize glow discharge with a relative low voltage, and the generated plasmas covered a large area and were in stable state. The efficiency of water treatment is improved and optimized with the designed electrodes.  相似文献   

7.
Dielectric barrier discharge (DBD) cold plasma at atmospheric pressure was used for preparation of copper nanoparticles by reduction of copper oxide (CuO). Power X-ray diffraction (XRD) was used to characterize the structure of the copper oxide samples treated by DBD plasma. Influences of H2 content and the treating time on the reduction of copper oxide by DBD plasma were investigated. The results show that the reduction ratio of copper oxide was increased initially and then decreased with increasing H2 content, and the highest reduction ratio was achieved at 20% H2 content. Moreover, the copper oxide samples were gradually reduced by DBD plasma into copper nanoparticles with the increase in treating time. However, the average reduction rate was decreased as a result of the diffusion of the active hydrogen species. Optical emission spectra (OES) were observed during the reduction of the copper oxide samples by DBD plasma, and the reduction mechanism was explored accordingly. Instead of high-energy electrons, atomic hydrogen (H) radicals, and the heating effect, excited-state hydrogen molecules are suspected to be one kind of important reducing agents. Atmospheric-pressure DBD cold plasma is proved to be an efficient method for preparing copper nanoparticles.  相似文献   

8.
The physicochemical processes of dielectric barrier discharge (DBD) such as insitu formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.  相似文献   

9.
Modification of the surface properties of polyethylene (PE) films is studied using air dielectric barrier discharge at atmospheric pressure. The treated samples are examined by Water contact angle measurements, Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). With the increase in treating time, the water contact angle changes from 93.2° before treatment to a minimum of 53.3° after a treatment for 50 s. Both ATR and XPS results show some oxidized species are introduced into the sample surface by the plasma treatment and the tendency of the water contact angle with the treating time is the same as that of oxygen concentration on the treated sample surface. SEM result shows the surface roughness of PE samples increases with the treatment time increasing.  相似文献   

10.
As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.  相似文献   

11.
Fluoride rubber F2311 film, an alternating copolymer of CF2-CFC1 (CTFE) and CH2-CF2 (VF2) components, was treated by atmospheric pressure dielectric barrier discharge (DBD) in air. The surface structure, topography and surface chemistry of the treated F2311 films were characterized by contact angle measurement, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS), respectively. The experimental results showed that a short time air plasma treatment led to morphological, wettability and chemical changes in the F2311 films. The surface hydrophilicity increased greatly after the plasma treatment, the static water contact angle decreased from 98.6° to 32°, and oxygen containing groups (C=O, O-C=O, etc. ) were introduced. Atomic force microscopy revealed that plasma produced by DBD etched F2311 films obviously. The roughness of the samples increased remarkably with the formation of peaks and valleys on the treated surfaces. The increased surface wettability may be correlated with both the introduction of hydrophilic groups due to air plasma oxidation of the surface and the change in surface morphology etched by DBD.  相似文献   

12.
Plasma polymerized fluorocarbon (FC) films have been deposited on silicon substrates from dielectric barrier discharge (DBD) plasma of C4Fs at room temperature under a pressure of 25~125 Pa. The effects of the discharge pressure and frequency of power supply on the films have been systematically investigated. FC films with a less cross linked structure may be formed at a relatively high pressure. Increase in the frequency of power supply leads to a significant increase in the deposition rate. Static contact angle measurements show that deposited FC films have a stable, hydrophobic surface property. All deposited films show smooth surfaces with an atomic surface roughness. The relationship between plasma parameters and the properties of the deposited FC films are discussed.  相似文献   

13.
The oxidation of elemental mercury (Hg~) by dielectric barrier discharge reactors was studied at room temperature, where concentric cylinder discharge reactor (CCDR) and surface discharge plasma reactor (SDPR) were employed. The parameters (e.g. Hg^0 oxidation efficiency, energy constant, energy yield, energy consumption, and O3 concentration) were discussed. From comparison of the two reactors, higher Hg^0 oxidation efficiency and energy constant in the SDPR system were obtained by using lower specific energy density. At the same applied voltage, energy yield in the SDPR system was larger than that in the CCDR system, and energy consumption in the SDPR system was much less. Additionally, more 03 was generated in the SDPR system. The experimental results showed that 98% of Hg^0 oxidation efficiency, 0.6 J·L^-1 of energy constant, 13.7 μg·J^-1 of energy yield, 15.1 eV·molecule^-1 of energy consumption, and 12.7 μg·J^-1 of O3 concentration were achieved in the SDPR system. The study reveals an alternative and economical technology for Hg^0 oxidation in the coal-fired flue gas.  相似文献   

14.
Titanium dioxide films were firstly deposited on glass substrate by DBD-CVD (dielectric barrier discharge enhanced chemical vapor deposition) technique. The structure of the films was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM). TiO2 films deposited under atmosphere pressure show preferred orientation, and exhibit columnar-like structure, while TiO2 films deposited under low gas pressure show no preferred orientation. The columnar-like structure with preferred orientation exhibits higher photocatalytic efficiency, since the columnar structure has larger surface area. However, it contributes little to the improvement of hydrophilicity. DBD-CVD is an alternative method to prepare photocatalytic TiO2 for its well-controllable property.  相似文献   

15.
The electronic excitation temperature of a surface dielectric barrier discharge (DBD) at atmospheric pressure has been experimentally investigated by optical emission spectroscopic measurements combined with numerical simulation. Experiments have been carried out to deter- mine the spatial distribution of electric field by using FEM software and the electronic excitation temperature in discharge by calculating ratio of two relative intensities of atomic spectral lines. In this work, we choose seven Ar atomic emission lines at 415.86 nm [(3s^23p^5)5p →(3s^23p^5)4s] and 706.7 nm, 714.7 nm, 738.4 nm, 751.5 nm, 794.8 nm and 800.6 nm [(3s^23p^5)4p → (3s^23p^5)4s] to estimate the excitation temperature under a Boltzmann approximation. The average electron energy is evaluated in each discharge by using line ratio of 337.1 nm (N2(C^3Пu →B3Пg)) to 391.4 nm (N2^+(B2 ∑u^+→ ∑g^+)). Furthermore, variations of the electronic excitation tempera- ture are presented versus dielectric thickness and dielectric materials. The discharge is stable and uniform along the axial direction, and the electronic excitation temperature at the edge of the copper electrode is the largest. The corresponding average electron energy is in the range of 1.6- 5.1 eV and the electric field is in 1.7-3.2 MV/m, when the distance from copper electrode varies from 0 cm to 6 cm. Moreover, the electronic excitation temperature with a higher permittivity leads to a higher dissipated electrical power.  相似文献   

16.
To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire- to-cylinder reactor were 1.02×10^-9 mol/L and 0.61×10^-9 mol/L, respectively. In the point-to- plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7×10^-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5×10^-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p- benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were elucidated in light of the ana  相似文献   

17.
In this paper, the oxidative desulfurization (ODS) system is directly applied to deal with the catalytic oxidation of sulfur compounds of sulfur-containing model oil by dielectric barrier discharge (DBD) plasma in the presence of air plus an extraction step with the oxidation-treated fuel put over ionic liquid [BMIM]FeC14 (1-butyl-3-methylimidazolium tetrachloroferrate). This new system exhibited an excellent desulfurization effect. The sulfur content of DBT in diesel oil decreased from 200 ppm to 4.92 ppm (S removal rate up to 97.5%) under the following optimal reaction conditions: air flow rate (v) of 60 mL/min, amplitude of applied voltage (U) on DBD of 16 kV, input frequency (f) of 79 kHz, catalyst amount (w) of 1.25 wt%, reaction time (t) of 10 min. Moreover, a high desulfurization rate was obtained during oxidation of benzothiophene (BT) or 4,6-DMDBT (4,6-dimethyl-dibenzothiophene) under the aforementioned conditions. The oxidation reactivity of different S compounds was decreased in the order of DBT, 4,6-DMDBT and BT. The remarkable advantage of the novel ODS system is that the desulfurization condition applies in the presence of air at ambient conditions without peroxides, aqueous solvent or biphasic oil-aqueous solution system.  相似文献   

18.
Low-temperature plasma is distinguished as a developing approach for sterilization which can deal with and overcome those problems such as thermal sensitivity and destruction by heat, formation of toxic by-products, higher costs and inefficiency in performances, caused by conventional methods. In this study, an experimental investigation was undertaken to characterize the effects of the operational parameters, such as treating time, discharge power and gas flow rate, of remote glow discharge air plasma. The results show that the inactivation of Escherichia coli can reach above 99.99% in less than 60 seconds and the optimal operational conditions for treating time, discharge power and gas flow rate were: 40 s, 80 W and 60 cm^3/min, respectively. The contribution of UV radiation during plasma germ deactivation is very limited.  相似文献   

19.
A macro-cell was used to study the phenomenon of anode striation on a 34 VGA Shadow Mask Plasma Display Panel (SMPDP). The breakdown process in the sustaining period of the macro-cell was taken by an Intensified Charge Coupled Device(ICCD) with narrow band filters. The mechanism of formation and evolution of the anode striation on SMPDP were investigated. The influence of the width of the electrode, the sustaining voltage, sustaining frequency and the voltage of the shadow mask on the anode striation was also studied. The results showed that the width of the electrodes, the sustaining voltage and frequency had a strong influence on the anode striation. The voltage of the shadow mask, however, hardly affected the anode striation, the firing voltage or the sustaining voltage.  相似文献   

20.
Parametrical effect on plasma discharge and beam extraction in the diagnosis neutral beam (DNB) system for HT-7 tokamak was studied experimentally. Useful results with an improved beam quality were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号