首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The nature of support and type of active metal affect catalytic performance. In this work, the effect of using La203 as promoter and support for Ni/γ-A1203 catalysts in dry reforming of methane was investigated. The reforming reactions were carried out at atmosphenc pressure in the temperature range of 500-2700℃. The activity and stability of the catalyst, carbon formation, and syngas (H2/CO) ratio were determined. Various techniques were applied for characterization of both fresh and used catalysts. Addition of La2O3 to the catalyst matrix improved the dispersion of Ni and adsorption of CO2, thus its activity and stability enhanced.  相似文献   

2.
Amorphous Ni-B/ZrO2 catalysts were prepared by coprecipitation-chemical reduction with KBH4 aqueous solution,and various crystalline phase ZrO2(amorphous-ZrO2,tetragonal-ZrO2 and monoclinic-ZrO2) supported Ni-B catalysts were obtained by thermal treatment in 5%H2-N2 stream at different temperature.The effect of ZrO2 polymorphs and the treatment temperature on the catalytic performance for the CO selective methanation were investigated,and the catalysts were characterized by N2 physisorption,Powder X-ray diffraction(XRD), Temperature-Programmed Desorption(CO-TPD and H2-TPD),and Differential Scanning Calorimeter(DSC).The treatment temperature affected strongly the crystalline structure of ZrO2,and the CO methanation activity and selectivity of the Ni-B/ZrO2 catalysts were significantly influenced by the crystalline phase of ZrO2.Of the three forms of ZrO2 polymorphs(amorphou-ZrO2,tetragonal-ZrO2 and monoclinic-ZrO2),the amorphous-ZrO2 supported nickle catalyst showed highest CO methanation activity,attributing in large part to the largest specific surface area and the optimum CO/H2 absorption intensity of the Ni-B/amorphous-ZrO2 catalyst.  相似文献   

3.
Tungsten-containing hexagonal mesoporous silica (W-HMS) supported tungsten oxide catalysts (WOx/W-HMS) was prepared for the selective oxidation of cyclopentene with aqueous hydrogen peroxide to glutaraldehyde. X-ray diffraction (XRD) results indicated that the crystal form of the active phase (tungsten oxide) of the WOx/W-HMS catalysts was dependent on the W loading and calcination temperature. X-ray photoelectron spec- troscopy (XPS) analysis revealed that the dispersed tungsten oxides on the surface of W-HMS support consisted of a mixture of W(V) and W(VI). It was found that a high content of amorphous W species in (5+) oxidation state resuited in the high catalytic activity. When the W loading was up to 12% (by mass) or the catalyst precursor was treated at temperature of 623 K, the catalytic activity decreased due to the presence of WO3 crystallites and the oxidation of W(V) to W(VI) on the catalyst surface. Furthermore, NH3-temperature-programmed-desorption (NH3-TPD) analysis showed that the effects of W loading and calcination temperature on the acidity of the catalysts were related to the catalytic activity. A high selectivity of 80.2% for glutaraldehyde with a complete conversion of cyclopentene was obtained over 8%WOx/W-HMS catalyst calcined at 573 K after 14 h of reaction.  相似文献   

4.
The performance characteristics of isothermal fluidized bed syngas methanation for substitute natural gas are investigated over a self-made Ni–Mg/Al2O3 catalyst. Via atmospheric methanation in a laboratory fluidized bed reactor it was clarified that the CO conversion varied in 5% when changing the space velocity in 40–120 L·g?1·h?1 but the conversion increased obviously by raising the superficial gas velocity from 4 to 12.4 cm·s?1. The temperature at 823 K is suitable for syngas methanation while obvious deposition of uneasy-oxidizing Cγoccurs on the catalyst at temperatures around 873 K. From a kinetic aspect, the lowest reaction temperature is suggested to be 750 K when the space velocity is 60 L·g?1·h?1. Raising the H2/CO ratio of the syngas increased proportionally the CO conversion and CH4 selectivity, showing that at enough high H2/CO ratios the active sites on the catalyst are sufficient for CO adsorption and in turn the reaction with H2 for forming CH4. Introducing CO2 into the syngas feed suppresses the water gas shift and Boudouard reactions and thus increased H2 consumption. The ratio of CO2/CO in syngas should be better below 0.52 because varying the ratio from 0.52 to 0.92 resulted in negligible increases in the H2 conversion and CH4 selectivity but decreased the CH4 yield. Introducing steam into the feed gas affected little the CO conversion but decreased the selectivity to CH4. The tested Ni–Mg/Al2O3 catalyst manifested good stability in structure and activity even in syngas containing water vapor.  相似文献   

5.
The renewable hydrogen generation through ethanol steam reforming is one of the anticipated areas for sustainable hydrogen generation. To elucidate the role of Ni and Co with ZSM-5 support, catalysts were prepared by wet impregnation method and ethanol steam reforming(ESR) was performed. The catalysts were characterized by HR-XRD, ATR–FTIR, HR-SEM, TEM with SAED, EDAX, surface area analyzer and TPR. It had shown complete ethanol conversion at 773 K, but the selectivity in hydrogen generation was found higher for 10% Ni/ZSM-5 catalyst as compared to 10% Co/ZSM-5. The 10% Ni/ZSM-5 catalyst has about 72% hydrogen selectivity at temperature 873 K. It indicates that Ni is a more sustainable catalyst as compared to Co with ZSM-5 support for ESR. The C_2H_4 was found major undesirable products up to 823 K temperature. Nevertheless, the 10% Ni/ZSM-5 catalyst had shown its stability for high temperature(873 K) ESR performance.  相似文献   

6.
A series of supported intermetallic Pb-Pb catalysts were prepared with the impregnation method by changing the support (silica, molecular sieve or g-alumina ) and the pore size. The chemical states of the two metals were characterized by XPS analysis, the process for producing methyl methacrylate based on the direct oxidative esterification of methacrolein with methanol in the presence of oxygen was performed in a slurry reactor with the above-mentioned catalysts. The influence of the calcination temperature and the kinds of support as well as the pore size on catalytic activity had been extensively investigated. Under the conditions of temperature at 80℃, catalyst 3.8% (w) and the reaction time 2 h, the conversion rate of methacrolein reached 85%, the selectivity and the yield of methyl methacrylate were 90% and 76.5%, respectively.  相似文献   

7.
SiO2, a-Al2O3, g-Al2O3, ZrO2 and CeO2 were used as supports and Ag as promoter to study their effects on Pd catalysts for selective hydrogenation of acetylene. The catalysts were prepared by impregnated synthesis and characterized by XRD, BET and TEM. The catalytic reaction was carried out in a fixed-bed reactor. Overall, the low specific surface area supports were better to increase the ethylene selectivity at high conversion rate of acetylene. Among the four Pd catalysts on low specific surface area supports, the catalyst on low specific surface area SiO2 (LSA-SiO2) retained a high ethylene selectivity even at complete conversion, while the other catalysts showed significant decrease in the selectivity at complete conversion. The performance of Pd/LSA-SiO2 was important to decrease the loss of ethylene in selective hydrogenation of trace acetylene in ethylene. Addition of Ag to Pd/LSA-SiO2 significantly decreased the formation of ethane, C4 alkenes and green oil, and improved the ethylene selectivity to 90% when Pd:Ag=1:1 and 1:3(w). When the ratio of Pd to Ag was above 1, the activity of Pd-Ag bimetallic catalyst was similar to that of Pd monometallic catalyst, and the selectivity of ethylene increased with increasing of amount of Ag. When the ratio of Pd to Ag was below 1, the activity of bimetallic catalyst decreased with increasing of amount of Ag, while the selectivity of ethylene was kept unchanged. The optimum temperature was 200~230℃ for 0.02%(w)Pd-0.02%(w)Ag/LSA-SiO2 to give a high ethylene selectivity and low formation of green oil.  相似文献   

8.
ZrO2-MnO2-ZnO supports were prepared by the co-precipitation method,and then Ni-Na/ZrO2-MnO2-ZnO catalysts were prepared by the impregnation method.In this paper,the reactions to synthesize methyl isopropyl ketone and diethyl ketone by the one-step synthesis method over this catalyst were studied,and meanwhile,the impact of the catalyst preparation conditions and the reaction conditions on catalyst performance was also investigated.It was observed that under the conditions when Ni loading was 25%,calcination temperature was 400℃ and reduction temperature was 410℃,this catalyst had good catalytic performance on the reaction.The suitable reaction conditions were achieved:reaction temperature was 400℃;reaction at atmospheric pressure;liquid hourly space velocity of raw material of 0.5 h 1 ;and the molar ratio of(methanol)/(methyl ethyl ketone)/(water) was equal to 1/1/1.Under such conditions,the conversion of methyl ethyl ketone could achieve 41.7%,and the overall selectivity of methyl isopropyl ketone and diethyl ketone could achieve 83.3%,which was comparable to the conversion of 38.1% and the selectivity of 82.2% achieved by using palladium as the active material.The good stability made this catalyst have good prospects for industrial application.  相似文献   

9.
The support of catalyst for the direct synthesis of diphenyl carbonate (DPC) by heterogeneous catalytic reaction was prepared by the sol-gel method. Compared with activated charcoal, molecular sieve, porous ceramics, hopcalite, the support prepared by the sol-gel method has higher activity. The characterization of the support by X-ray diffraction (XRD) and transmission electron microscope (TEM) show that the mare crystal phase is Co2MnO4 and the average particle diameter is about 40 nm. The optimum conditions for synthesis of the support were determined by orthogonal experiments, which indicate that the proportion of Cu, Mn, and Co is the first important factor influencing the yield and selectivity of DPC. Temperature of calcination is the second one. The optimum conditions are: molar proportion of Cu, Mn, and Co being 1 : 1 : 1, temperature of calcination 700℃, drying at 100~C, temperature of water bath 85~C. The yield and selectivity of DPC in the process can reach 38% and 99% in the batch operation, respectively. The copper cobalt manganese mixed oxides chosen as the support contribute more to the high catalytic activity than the sol-gel method.  相似文献   

10.
Cu(II) and Mn(II) metals embedded on mesoporous SBA-15 were synthesized by co-precipitation technique.The support and catalysts were characterized by SEM–EDX,TEM,BET,XRD and ICP-AES methods.The catalytic activity of these catalysts was evaluated for styrene oxidation at various reaction conditions such as styrene to TBHP mole ratio,temperature,catalyst amount by using TBHP as an oxidizing agent.Major reaction products were styrene oxide and benzaldehyde and highest styrene conversion(97.3%) was observed at styrene to TBHP mole ratio of 1:4,temperature at 80 °C and 20 mg of catalyst.Further,the recyclability of the catalysts was observed and found that they can be recycled three times without major loss in their activity and selectivity.  相似文献   

11.
采用浸渍和粉末压片的方法制备了两种ZrO2-Al2O3复合载体并用于负载Ni基催化剂,并利用氮气等温物理吸附、X射线粉末衍射(XRD)、H2程序升温还原(H2-TPR)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析手段对催化剂物化性质进行表征,考察了ZrO2-Al2O3复合载体制备方法及ZrO2的引入对Ni基催化剂在CO、CO2和CO-CO2共存的3种体系下甲烷化反应活性的影响。材料表征和活性测试结果表明,在CO甲烷化体系中,与单一Al2O3载体相比,引入ZrO2的复合载体能有效提高催化剂中Ni物种的分散度从而增强CO甲烷化过程中催化剂活性,且粉末压片法较浸渍法制备的复合载体能有效提高催化剂的还原度,降低还原温度,但前者会大大降低催化剂的比表面积;在CO2甲烷化体系中,当载体形貌和制备方法相同时,载体的变化对催化剂活性的影响较小,CO2转化率主要受到制备方法不同引起的物理性质如比表面积变化的影响;在CO-CO2共存体系中,由于CO在竞争吸附中比CO2更容易占据活性位点,所以呈现出优先进行CO甲烷化再进行CO2甲烷化、CO2的含量先增多后减少的规律。  相似文献   

12.
采用分步浸渍法制备了碱/碱土金属修饰Ni基催化剂Ni-M/Al2O3 (M=K2CO3, Na2CO3, MgO, CaO)。探究了碱/碱土金属的添加对改性Ni基催化剂CO2吸附和甲烷化性能的影响。研究发现,碱/碱土金属的添加提高了Ni/Al2O3催化剂表面的碱性活性位点密度,强化了其CO2吸附性能。碱/碱土金属类型影响Ni-M/Al2O3催化剂碱性活性位点的分布、NiO物相的转化及Ni的分散度,进而影响其甲烷化性能。MgO添加使NiO物相转化为与载体呈强相互作用的β型和γ型NiO,降低了催化剂表面的强碱性活性位点比例,有利于CO2吸附活化。Ni-MgO/Al2O3的CO2吸附容量最高为0.68mmolCO2/g,其CO2转化率和CH4选择性分别高达58.4%和95.4%,其在烟气CO2捕集与原位甲烷化中极具应用前景。  相似文献   

13.
Supported base metal catalysts were tested for the preferential oxidation of CO (CO PROX). The catalysts we investigated covered a wide range of transition metals (Co, Cr, Cu, Ni, Zn) supported on oxides with very different acidic, basic and redox properties (MgO, La2O3, SiO2–Al2O3, CeO2, Ce0.63Zr0.37O2). The influence of the metal loading (Cu), the support properties (acidity, basicity, redox, surface area) and the reaction conditions (reaction temperature, feed composition) on the catalyst activity and selectivity was evaluated. The activity of ceria and ceria–zirconia supported copper catalysts was comparable to the performances of noble metal samples classically used for the PROX reaction. In addition, Cu–CeO2 catalysts showed a practically constant and high selectivity towards CO oxidation in the temperature range of 50–150 °C. Due to the strong synergetic effect between copper and ceria, only a small amount of copper (0.3 wt.%) was necessary to get an active catalyst. The best catalytic performances were obtained for the samples containing 1–3 wt.% copper. The presence of small copper particles in close interaction with the ceria support was shown to be responsible for the enhanced activity. Except for the hydrogen oxidation, no parallel reactions (CO or CO2 methanation reactions, coking, RWGS) could be detected over these catalysts. Classically, an increase of the oxygen excess led to an increased CO conversion with a simultaneous loss of selectivity towards CO2. Finally, the presence of CO2 in the feed negatively affected the catalytic activity. This effect was attributed to the adsorption of CO2 on the copper sites, probably as CO.  相似文献   

14.
孟凡会  常慧蓉  李忠 《化工学报》2014,65(8):2997-3003
采用共浸渍法制备了Ni-Mn/Al2O3催化剂,考察了助剂Mn的含量对催化剂结构及浆态床CO甲烷化性能的影响。采用XRD、H2-TPR、BET、TEM、H2-化学吸附等表征对催化剂进行了测试分析,结果表明,Mn助剂的引入能够促进Ni物种在载体表面的分散,减弱Ni物种与载体的相互作用,降低催化剂的还原温度,提高催化剂的比表面积,减小活性金属Ni的晶粒尺寸。随着Mn含量的增加,Ni-Mn/Al2O3催化剂的甲烷化性能先升后降,其中以Mn含量为4%(质量分数)时的催化甲烷化性能最佳,添加过量的Mn导致活性组分Ni被部分覆盖,催化甲烷化性能下降。通过对16Ni4Mn/Al2O3催化剂样品的浆态床反应温度及反应压力的研究发现,当反应温度为280℃、反应压力为1.5 MPa时,催化剂样品16Ni4Mn/Al2O3的CO转化率及CH4选择性分别达到96.2%和88.8%。  相似文献   

15.
何璐铭  辛忠  高文莉  顾佳  孟鑫 《化工学报》2020,71(11):5007-5015
以三嵌段共聚物P123为模板剂,采用静电纺丝法制备了多孔Ni/SiO2催化剂,考察其在CO甲烷化中的催化性能。采用N2物理吸脱附测试、扫描电子显微镜(SEM)、X射线衍射(XRD)、H2-程序升温还原(H2-TPR)、透射电子显微镜(TEM)、热重分析(TGA)对催化剂的结构性质进行表征。结果表明,静电纺丝法制备的多孔Ni/SiO2催化剂活性组分Ni在SiO2载体纤维上高度分散,比表面积大,Ni颗粒尺寸小,金属与载体相互作用强,在CO甲烷化反应中表现出优异的催化活性和稳定性。在温度450℃,压力0.1 MPa,质量空速15000 ml/(g·h)条件下,多孔Ni/SiO2催化剂CO转化率最高可达96.4%,CH4选择性可达86.4%。此方法为工业上制备高催化活性且无须二次成型的甲烷化催化剂提供了新思路。  相似文献   

16.
纪子柯  包成 《化工进展》2022,41(1):120-132
CO选择性甲烷化被认为是适用于低温燃料电池的、最具发展潜力的CO深度去除技术,而该技术大规模应用的关键在于高性能负载型催化剂的开发。本文综述了近些年来CO选择性甲烷化的研究进展,以催化剂的选取和评判标准为起点,着重论述了CO和CO2甲烷化的反应机理、粒径效应以及载体和助剂对催化剂活性和选择性的影响,最后总结了CO选择性甲烷化的研究并对未来的研究方向进行了展望。分析表明,选取合适的活性组分负载量以及载体和助剂可以大幅度提高催化剂的CO甲烷化活性,而通过氯离子改性以及Ru-Ni双金属的制备来控制金属-载体作用界面则是提高催化剂CO甲烷化选择性的关键。指出对甲烷化反应机理的研究和具有长期稳定性催化剂的开发是未来CO选择性甲烷化研究的重点。  相似文献   

17.
Ni/Al_2O_3催化剂是甲烷二氧化碳重整反应制取合成气研究最多、最具应用潜力的一种催化剂。通过对催化剂进行CO_2-TPD研究,考察还原态Ni/Al_2O_3催化剂的CO_2脱附特性。结果表明,浸渍法制备的Ni/Al_2O_3催化剂CO_2脱附曲线呈现双峰,分别在(60~65)℃和(350~380)℃出现高低温两个活性位;高温CO_2吸附量为3.0 cm~3·g~(-1),低温CO_2吸附量为24.0 cm~3·g~(-1)。催化剂的CO_2吸附量与其Ni含量无关。考察选用不同载体的CO_2脱附行为,发现以Al_2O_3为载体的催化剂CO_2吸附量是MgO和SiO_2为载体催化剂的2~4倍,以TiO_2为载体的催化剂几乎不吸附CO_2。  相似文献   

18.
以CeO_2-ZrO_2-Al_2O_3复合氧化物为载体,采用分步等体积浸渍法制备了不同Ru负载量及不同Ru前驱体的催化剂,并考察了这些因素对催化剂CO选择性甲烷化活性及为燃料电池供氢操作温度窗口的影响。结果表明,Ru负载量为1%的催化剂具有较好的CO选择性甲烷化活性及最宽的操作温度窗口;以Ru(NO)(NO_3)_3为前驱体制备的催化剂,Ru金属分散度较差,低温CO甲烷化活性较低,高温CO甲烷化选择性较差,操作温度窗口仅为15℃;以RuCl_3·xH_2O为前驱体制备的催化剂具有良好的CO选择性、甲烷化活性及60℃操作温度窗口,且水洗除氯操作对催化剂性能影响不明显。  相似文献   

19.
采用共沉淀法制备了CexZr1-xO2固溶体作为催化剂载体,采用柠檬酸络合法将镍负载于CexZr1-xO2载体上得到Ni/CexZr1-xO2催化剂,利用X射线衍射(XRD)、N2吸附-脱附(N2-BET)、程序升温脱附(TPD)、程序升温还原(TPR)等技术对催化剂进行表征,在常压微型固定床反应器上测试了CO2甲烷化的性能,考察了n(Ce)/n(Zr)、镍含量对催化性能的影响。研究发现制备的催化剂具有优异的活性,在常压和空速15 000 mL·g-1·h-1条件下,反应温度200℃时,12% Ni/Ce0.25Zr0.75O2催化剂(负载量为质量分数,下同)CO2的转化率达74%,CH4选择性为100%。12% Ni/Ce0.25Zr0.75O2催化剂300 h的稳定性测试结果显示其具有较高的抗烧结性能。催化剂的优异活性归因于采用了新的负载方法--柠檬酸络合法负载活性组分镍,该法实现了镍的高分散和催化剂的大的比表面积。  相似文献   

20.
以拟薄水铝石、硝酸镍以及镁、钴、镧和铁的硝酸盐为原料,尿素为燃烧剂,采用尿素燃烧法制备系列镍基(以及含助剂)甲烷化催化剂。通过XRD和BET等对催化剂结构进行表征,采用固定床反应器评价催化剂的合成气甲烷化催化反应性能,考察Ni含量、尿素与原料质量比、焙烧温度和不同助剂等对催化剂结构和性能的影响,评价催化剂的稳定性。结果表明,Ni O质量分数为7.5%~44.8%时,采用尿素燃烧法均可制备γ-Al2O3为载体的镍基甲烷化催化剂,最佳制备条件为:尿素与原料质量比3∶1,焙烧温度450℃,燃烧时间40 min。26.1%Ni O/γ-Al2O3催化剂表现出较好的催化性能,在230℃和常压条件下,CO转化率和CH4选择性分别达99.5%和98.3%。26.1%Ni O-2.6%La2O3/γ-Al2O3催化剂在(230~700)℃经过多次升降反应温度和1 460 h的长周期稳定性测试,表现出较好的稳定性和耐热冲击性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号