首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work aims to construct an efficient and robust fuel cell/battery hybrid operating system for a household application. The ability to dispatch the power demands, sustain the state of charge (SOC) of battery, optimize the power consumption, and more importantly, ensure the durability as well as extend the lifetime of a fuel cell system is the basic requirements of the hybrid operating system. New power management strategy based on fuzzy logical combined state machine control is developed, and its effectiveness is compared with various strategies such as dynamic programming (DP), state machine control, and fuzzy logical control with simulation. Experimental results are also presented, except for DP because of difficulties in achieving real‐time implementation and much faster response to load variation. The given current from the energy management system (EMS) as a reference of the fuel cell output current is determined by filtering out various harmful signals. The new power management strategy is applied to a 1‐kW stationary fuel cell/battery hybrid system. Results show that the fuel cell hybrid system can run much smoothly with prolonged lifetime.  相似文献   

2.
The polymer electrolyte membrane fuel cell (PEMFC) coupled with the battery is a promising hybrid power system for future energy supply application. Fuel cell durability, battery charge sustenance, and fuel consumption strongly rely on the energy management strategy (EMS). This paper puts forward an optimized rule-based EMS using genetic algorithm (GA) to optimally allocate the power between the fuel cell and the battery system. Control variables in real-time rule-based EMS are optimally adjusted with single objective of battery charge sustenance considering the fuel cell durability and efficiency. The proposed optimized rule-based EMS is simulated and experimentally verified via MATLAB/Simulink and LabVIEW-based experimental rig, respectively. The conventional rule-based EMS, fuzzy logic EMS, and dynamic programming (DP) EMS are also examined for comparison. The comparison results elucidate that the optimized rule-based EMS realizes a large performance improvement over the conventional rule-based and fuzzy logic EMSs. Near optimal performance is verified compared with DP EMS in terms of fuel economy, battery charge sustenance, fuel cell efficiency, and system durability. The combination of rule-based EMS and GA optimization algorithm has the advantage of having expert experience and global optimization properties, realizing optimal power allocation in real-time application with lower computation burden, which could be applied easily to other EMS system without loss of validity.  相似文献   

3.
A hybrid power system consists of a fuel cell and an energy storage device like a battery and/or a supercapacitor possessing high energy and power density that beneficially drives electric vehicle motor. The structures of the fuel cell-based power system are complicated and costly, and in energy management strategies (EMSs), the fuel cell's characteristics are usually neglected. In this study, a variable structure battery (VSB) scheme is proposed to enhance the hybrid power system, and an incremental fuzzy logic method is developed by considering the efficiency and power change rate of fuel cell to balance the power system load. The principle of VSB is firstly introduced and validated by discharge and charge experiments. Subsequently, parameters matching of the fuel cell hybrid power system according to the proposed VSB are designed and modeled. To protect the fuel cell as well as ensure the efficiency, a fuzzy logic EMS is formulated via setting the fuel cell operating in a high efficiency and generating an incremental power output within the affordable power slope. The comparison between a traditional deterministic rules-based EMS and the designed fuzzy logic was implemented by numerical simulation in three different operation conditions: NEDC, UDDS, and user-defined driving cycle. The results indicated that the incremental fuzzy logic EMS smoothed the fuel cell power and kept the high efficiency. The proposed VSB and incremental fuzzy logic EMS may have a potential application in fuel cell vehicles.  相似文献   

4.
In this study, a small portable fuel cell/battery hybrid system has been developed. The system consists of a single portable direct borohydride/peroxide fuel cell (DBPFC), NiMH battery and power management unit (PMU). The battery has been used as a primary power source and has been discharged at constant load. When its state of charge is reduced, the DBPFC charges the battery and powers the load simultaneously. A DC–DC Boost converter has been used as a PMU. The DBPFC has provided the total power of 0.21 Wh into the system during the charge. During this experimental study fuel (NaBH4) efficiency of 37% has been achieved in the hybrid system, while the system efficiency has been calculated as 34.5%.  相似文献   

5.
This paper presents a hybrid Fuel Cell-based Power System (FCPS) consisting of fuel cell and hybrid Energy Storage Systems (ESSs), including a battery with high energy density and supercapacitor with high power density to overcome the sudden load demand change and improving the reliability of the delivered power. Any hybrid power system needs Energy Management Strategies (EMS) to balance the power between the different energy sources. In this paper, a comparative analysis of three energy management strategies, including the state machine control method, the classical PI control method and equivalent consumption minimization strategy (ECMS) is performed. The paper's main objective is enhancing the DC-bus voltage profile of a hybrid fuel cell/battery/supercapacitor power system equipped with the developed under-mentioned EMS by using a hybrid modified optimization technique that combines Harris Hawks optimization (HHO) and Sine Cosine Algorithm (SCA). The new hybrid HHO-SCA is employed to determine the optimal control parameters of the DC-bus voltage controller, which significantly assists in enhancing the DC-bus voltage profile as well as the performance of the applicable ESS in terms of improving efficiency and SoC. The effectiveness of the suggested control schemes is simulated using MATLAB/SIMULINK software. The simulation results confirmed that the proposed HHO-SCA is superior and efficient in improving the DC-bus voltage.  相似文献   

6.
In this paper, a fuel-cell (FC)/battery hybrid direct-current (DC) backup power system is proposed for high step-up applications. This system is composed of a newly developed non-isolated three-port converter, which achieves a high voltage gain by taking the advantage of a quasi Z-source network and an energy transfer capacitor. After analyzing the converter, a comprehensive comparison study and a design procedure are provided. Moreover, the controllers regulating the source power levels while smoothing the FC power profile according to the proposed energy management strategy (EMS) are designed based on the developed small-signal model of the proposed converter. Both hardware and controller design procedures are validated through the PSIM model of the whole system. As a result, it is shown that the proposed system can effectively couple FC and battery while transferring their energies to a high voltage DC bus according to the offered EMS.  相似文献   

7.
The hybrid powerplant combining a fuel cell and a battery has become one of the most promising alternative power systems for electric unmanned aerial vehicles (UAVs). To enhance the fuel efficiency and battery service life, highly effective and robust online energy management strategies are needed in real applications.In this work, an energy management system is designed to control the hybrid fuel cell and battery power system for electric UAVs. To reduce the weight, only one programmable direct-current to direct-current (dcdc) converter is used as the critical power split component to implement the power management strategy. The output voltage and current of the dcdc is controlled by an independent energy management controller. An executable process of online fuzzy energy management strategy is proposed and established. According to the demand power and battery state of charge, the online fuzzy energy management strategy produces the current command for the dcdc to directly control the output current of the fuel cell and to indirectly control the charge/discharge current of the battery based on the power balance principle.Another two online strategies, the passive control strategy and the state machine strategy, are also employed to compare with the proposed online fuzzy strategy in terms of the battery management and fuel efficiency. To evaluate and compare the feasibility of the online energy management strategies in application, experiments with three types of missions are carried out using the hybrid power system test-bench, which consists of a commercial fuel cell EOS600, a Lipo battery, a programmable dcdc converter, an energy management controller, and an electric load. The experimental investigation shows that the proposed online fuzzy strategy prefers to use the most power from the battery and consumes the least amount of hydrogen fuel compared with the other two online energy management strategies.  相似文献   

8.
A hybrid system combining a 2 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack and a lead–acid battery pack is developed for a lightweight cruising vehicle. The dynamic performances of this PEMFC system with and without the assistance of the batteries are systematically investigated in a series of laboratory and road tests. The stack current and voltage have timely dynamic responses to the load variations. Particularly, the current overshoot and voltage undershoot both happen during the step-up load tests. These phenomena are closely related to the charge double-layer effect and the mass transfer mechanisms such as the water and gas transport and distribution in the fuel cell. When the external load is beyond the range of the fuel cell system, the battery immediately participates in power output with a higher transient discharging current especially in the accelerating and climbing processes. The DC–DC converter exhibits a satisfying performance in adaptive modulation. It helps rectify the voltage output in a rigid manner and prevent the fuel cell system from being overloaded. The dynamic responses of other operating parameters such as the anodic operating pressure and the inlet and outlet temperatures are also investigated. The results show that such a hybrid system is able to dynamically satisfy the vehicular power demand.  相似文献   

9.
In this study, a direct borohydride–peroxide fuel cell (DBPFC)–LiPo battery hybrid motorcycle, called HYBROTO, was developed. The hybrid system was designed using a 10-cell DBPFC stack with 120 W of maximum power as the main power source, a 12 LiPo battery pack with 6300 mAh and 65 C for energy storage and as auxiliary power source, and a brushless DC (BLDC) motor. In addition, a voltage-monitoring integrated circuit for fuel cells, a battery management unit, and a motor control circuit were developed to command the DBPFC, LiPo battery, and BLDC motor, respectively. The hybrid system was managed and synchronized by a main control unit (MCU) containing a synchronous bidirectional buck–boost converter and a boost converter. For performance tests, the DBPFC–battery system and BLDC motor were installed in an electric motorcycle body. Performance tests were carried out in the hybrid system under a constant load of 60 W. The hybrid system showed a satisfactory performance under the constant load with an efficiency of 67%. However, the MCU requires further improvement to provide more stable power output. The motorcycle prototype was tested at the 2016 International Symposium on Sustainable Aviation organized by the Sustainable Aviation Research Society.  相似文献   

10.
This research work is designed for the management of the electric power of an autonomous hybrid system which generally integrates several subsystems, whose main source of production is solar energy (photovoltaic panels) coupled with a hydrogen fuel cell using a storage device (lithium battery).This energy coupling behavior is used in a wide range of operating conditions ensuring the originality of the exploitation of the energy produced to supply electricity to remote regions and isolated urban regions of southern Algeria, which will be modeled by a recent graphic formalism methodology macroscopic energy representation and controlled by a simple method the maximum control structure that takes into account all the inputs and outputs of the system. This hybrid system is controlled by an energy management strategy by acting on a common continuous bus with variable residential load via a DC/DC converter, allowing control of the amount of energy between the different energy resources to minimize the use of the fuel cell from which to minimize hydrogen consumption. Another is used to maintain the voltage of this bus at its reference via the battery by regulating the bidirectional DC/DC converter.  相似文献   

11.
The concept of passive hybrid, i.e. the direct electrical coupling between a fuel cell system and a battery without using a power converter, is presented as a feasible solution for powertrain applications. As there are no DC/DC converters, the passive hybrid is a cheap and simple solution and the power losses in the electronic hardware are eliminated. In such a powertrain topology where the two devices always have the same voltage, the active power sharing between the two energy sources can not be done in the conventional way. As an alternative, control of the fuel cell power by adjusting its operating pressure is elaborated. Only pure H2/O2 fuel cell systems are considered in this approach. Simulation and hardware in the loop (HIL) results for the powertrain show that this hybrid power source is able to satisfy the power demand of an electric vehicle while sustaining the battery state of charge.  相似文献   

12.
A portable proton exchange membrane (PEM) fuel cell-battery power system that uses hydrogen as fuel has a higher power density than conventional batteries, and it is one of the most promising environmentally friendly small-scale alternative energy sources. A general methodology of modeling, control and building of a proton exchange membrane fuel cell-battery system is introduced in this study. A set of fuel cell-battery power system models have been developed and implemented in the Simulink environment. This model is able to address the dynamic behaviors of a PEM fuel cell stack, a boost DC/DC converter and a lithium-ion battery. To control the power system and thus achieve proper performance, a set of system controllers, including a PEM fuel cell reactant supply controller and a power management controller, were developed based on the system model. A physical 100 W PEM fuel cell-battery power system with an embedded micro controller was built to validate the simulation results and to demonstrate this new environmentally friendly power source. Experimental results demonstrated that the 100 W PEM fuel cell-battery power system operated automatically with the varying load conditions as a stable power supply. The experimental results followed the basic trend of the simulation results.  相似文献   

13.
This paper evaluates the option of using a new powertrain based on fuel cell (FC), battery and supercapacitor (SC) for the Urbos 3 tramway in Zaragoza, Spain. In the proposed powertrain configuration, a hydrogen Proton-Exchange-Membrane (PEM) FC acts as main energy source, and a Li-ion battery and a SC as energy support and storage systems. The battery supports the FC during the starting and accelerations, and furthermore, it absorbs the power generated during the regenerative braking. Otherwise, the SC, which presents the fastest dynamic response, acts mainly during power peaks, which are beyond the operating range of the FC and battery. The FC, battery and SC use a DC/DC converter to connect each energy source to the DC bus and to control the energy exchange. This configuration would allow the tramway to operate in an autonomous way without grid connection. The components of the hybrid tramway, selected from commercially available devices have been modeled in MATLAB-Simulink. The energy management system used for controlling the components of the new hybrid system allows optimizing the fuel consumption (hydrogen) by applying an equivalent consumption minimization strategy. This control system is evaluated by simulations for the real driving cycle of the tramway. The results show that the proposed control system is valid for its application to this hybrid system.  相似文献   

14.
This paper describes an energy management algorithm for an electrical hybrid vehicle. The proposed hybrid vehicle presents a fuel cell as the main energy source and the storage system, composed of a battery and a supercapacitor as the secondary energy source. The main source must produce the necessary energy to the electrical vehicle. The secondary energy source produces the lacking power in acceleration and absorbs excess power in braking operation. The addition of a supercapacitor and battery in fuel cell-based vehicles has a great potential because it allows a significant reduction of the hydrogen consumption and an improvement of the vehicle efficiency. Other the energy sources, the electrical vehicle composed of a traction motor drive, Inverter and power conditioning. The last is composed of three DC/DC converters: the first converter interfaces the fuel cell and the DC link. For the second and the third converter, two buck boost are used in order to interface respectively the ultracapacitor and the battery with the DC link. The energy management algorithm determines the currents of the converters in order to regulate accurately the power provided from the three electrical sources. This algorithm is simulated with MATLAB_Simulink and implemented experimentally with a real-time system controller based on dSPACE. In this paper, the proposed algorithm is evaluated for the New European Driving Cycle (NEDC). The experimental results validate the effectiveness of the proposed energy management algorithm.  相似文献   

15.
The growing demand for renewable energy sources has favored attention towards fuel cell and in particular towards Polymer Electrolyte Membrane Fuel Cell (PEMFC) as an alternative energy source. Despite the advantage of possessing high current density, standalone isolated fuel cell operate at low voltage and the output is heavily dependent on the operating condition. This demands the integration of fuel cells with suitable power conditioning units. The present work aims at designing a controller which achieves the objective of regulated output voltage irrespective of variation in both load and source operating condition. The design and integration of the converter with PEMFC necessitates the development of a mathematical model, which can represent the PEMFC dynamics under different operating conditions. PEMFCs are known to exhibit distributed dynamics and possess long term memory, which are more accurately represented by fractional calculus. In this regard, a hybrid optimization based approach for fractional order modeling of PEMFC has been proposed. Further using the model, a fractional order Proportional Integral (FOPI) controller has been designed for regulating the load voltage. The presence of an extra tuning parameter in FOPI allows greater flexibility in achieving the system specification as compared to the classical Integer Order Proportional Integral (IOPI) controller. The effectiveness of the proposed FOPI controller for PEMFC fed PWM DC/DC converter has been validated under varying operating condition of the PEMFC and load perturbations in real time environment.  相似文献   

16.
This paper presents the experimental results of an actively controlled fuel cell/battery hybrid power source topology that can be widely used in many applications, such as portable electronic devices, communication equipment, spacecraft power systems, and electric vehicles, in which the power demand is impulsive rather than constant. A step-down DC/DC power converter is incorporated to actively control the power flow between the fuel cell and the battery to achieve both high power and high energy densities. The results show that the hybrid power source can achieve much greater specific power and power density than the fuel cell alone. This paper first demonstrates that an actively controlled hybrid with a 35 W hydrogen-fueled polymer electrolyte membrane fuel cell and a lithium-ion battery pack of six cells yielded a peak power of 100 W, about three times as high as the fuel cell alone can supply, while causing a very limited (10%) weight increase to the whole system. After that, another hybrid source using a different battery array (eight cells) was investigated to further validate the control strategy and to show the flexibility and generality of the hybrid source design. The experimental data show that the hybrid source using an eight-cell battery supplied a peak power of 135 W, about four times that of the fuel cell alone. Finally, three power sources including the fuel cell alone and the two hybrids studied were compared in terms of specific power, power density, volume, weight, etc. The design presented here can be scaled to larger or smaller power capacities for a variety of applications.  相似文献   

17.
A numerical model is developed from a stationary proton exchange membrane fuel cell (PEMFC) system comprising a PEMFC, a DC‐DC buck converter, an auxiliary power supply (a lithium battery and supercapacitor), and a DC‐AC inverter. The transient and steady‐state performance of the PEMFC system is investigated by means of Matlab/Simulink simulations. It is shown that a good agreement exists between the simulated polarization curve of the PEMFC and the experimental results presented in the literature. In addition, it is shown that the DC‐DC buck converter provides an effective means of stabilizing the output voltage of the PEMFC. Finally, the results confirm the effectiveness of the auxiliary power source in enabling the PEMFC to satisfy the peak load demand. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, modeling, control and power management (PM) of hybrid Photovoltaic Fuel cell/Battery bank system supplying electric vehicle is presented. The HPS is used to produce energy without interruption. It consists of a photovoltaic generator (PV), a proton exchange membrane fuel cell (PEMFC), and a battery bank supplying an electric vehicle of 3 kW. In our work, PV and PEMFC systems work in parallel via DC/DC converter and the battery bank is used to store the excess of energy. The mathematical model topology and it power management of HPS with battery bank system supplying electric vehicle (EV) are the significant contribution of this paper. Obtained results under Matlab/Simulink and some experimental ones are presented and discussed.  相似文献   

19.
The fuel cell/battery durability and hybrid system stability are major considerations for the power management of fuel cell hybrid electric bus (FCHEB) operating on complicated driving conditions. In this paper, a real time nonlinear adaptive control (NAC) with stability analyze is formulated for power management of FCHEB. Firstly, the mathematical model of hybrid power system is analyzed, which is established for control-oriented design. Furthermore, the NAC-based strategy with quadratic Lyapunov function is set up to guarantee the stability of closed-loop power system, and the power split between fuel cell and battery is controlled with the durability consideration. Finally, two real-time power management strategies, state machine control (SMC) and fuzzy logic control (FLC), are implemented to evaluate the performance of NAC-based strategy, and the simulation results suggest that the guaranteed stability of NAC-based strategy can efficiently prolong fuel cell/battery lifespan and provide better fuel consumption economy for FCHEB.  相似文献   

20.
A testing and validation platform for hybrid fuel cell (FC)–lithium‐ion battery (LIB) powertrain systems is investigated. The hybrid FC electric vehicle emulator enables testing of hybrid system components and complete hybrid power modules up to 25 kW for application in electric light‐duty vehicles, light electric vehicles and so forth. A hybrid system comprising a 10‐kWel low‐temperature polymer electrolyte membrane FC stack and an 11.5‐kWh LIB pack is installed. The system supplies power to a 20‐kW permanent magnet synchronous motor and a 25‐kW alternating current asynchronous, electrically programmable dynamometer is used to simulate the vehicle load during testing at dynamic drive cycle. The steady‐state performance tests of the direct current (DC) motor, DC/DC converter, low‐temperature polymer electrolyte membrane FC stack and LIB are performed as well as dynamic tests of the complete hybrid system. The Economic Commission for Europe driving cycle is selected as a reference cycle to validate the investigated hybrid FC–LIB powertrain. An efficiency of 83% and 95% is measured for electric motor and DC/DC converter, respectively. An average stack efficiency of 50% is achieved. An average hydrogen consumption of 3.9 g * km?1 is reached during the Economic Commission for Europe driving cycle test. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号