首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 484 毫秒
1.
报道了一款基于0.25μm GaN HEMT工艺的C波段75 W高效率功率放大器MMIC。为提高功率增益,芯片的整体拓扑结构设计为三级。在末级输出匹配电路上设计了一个高效电抗式匹配拓扑,在末级管芯输入匹配电路上运用了谐波控制技术,同时利用GaN HEMT器件大信号模型来优化驱动比,通过这三种技术途径有效提高了芯片的附加效率。为扩展工作带宽及提高稳定性,其他匹配电路采用有耗匹配方式。在漏压28 V、脉宽100μs、占空比10%的工作条件下,芯片在4.8~6.0 GHz频带范围内,典型输出功率达到75 W(最高81 W),增益大于25.5dB,附加效率大于51%(最高55%),芯片面积为3.8 mm×5.5 mm。  相似文献   

2.
L波段GaN大功率高效率准单片功率放大器   总被引:1,自引:0,他引:1  
研制了一款基于NEDI 0.25μm GaN功率MMIC工艺的L波段大功率高效率准单片功率放大器。采用两级拓扑结构,以准单片形式实现。输入采用有耗匹配网络提高芯片的稳定性,级间和末级匹配均采用无耗纯电抗网络,其中末级匹配电路通过低损耗陶瓷电路实现。合理规划前级与末级间推动比,降低前级漏电流,减小末级匹配损耗,优化谐波匹配,实现大功率高效率设计。芯片在28V脉冲电压下工作,在1.2~1.4GHz范围内,实测输出功率大于49dBm,功率增益大于25dB,功率附加效率达到73%。管芯部分及输入匹配电路采用GaN功率MMIC工艺制作,输出匹配电路采用低损耗陶瓷片介质加工,两块电路键合一起总面积8.0mm×5.6mm。  相似文献   

3.
报道了一款采用0.25μm GaN功率MMIC工艺研制的0.1~2.0 GHz超宽带功率放大器芯片。芯片采用非均匀分布式拓扑结构进行设计。在管芯栅极端设计稳定结构来提高电路的整体稳定性,在漏极端采用阻抗渐变的方式进行电路匹配,从而提高电路的效率。芯片漏压30 V、连续波条件下,在0.1~2.0 GHz频率范围内,线性增益大于18 d B,功率增益大于13 d B;在0.1~1.5 GHz频率范围内饱和输出功率大于10 W,功率附加效率大于55%,最高效率达到78%。芯片面积2.4 mm×1.9 mm。  相似文献   

4.
通过负载牵引测试验证了源端二次谐波对器件效率的影响,同时又进一步验证了输出谐波匹配对放大器的作用。基于此结果,研制了两款采用0.25μm工艺的GaN功率MMIC 4.0~5.6GHz高效率放大器芯片,芯片采用二级放大的结构。第一款输出级只考虑基波的匹配;第二款输出级匹配电路兼顾二次和三次谐波进行匹配。两款的末前级均考虑二次谐波的匹配,同时级间优化推动比,进一步提高效率。输入级和级间匹配电路采用有耗匹配,提高稳定性。芯片在4.0~5.6 GHz范围内漏压28 V,脉宽100μs,占空比10%条件下输出功率41dBm,功率增益20~21dB,功率附加效率分别在48%和45%以上。芯片面积3.9mm×3.3mm。  相似文献   

5.
基于星载高可靠性的应用背景,采用0.20μm GaN HEMT工艺研制了一款12 V工作电压的Ku频段功率放大器芯片。利用电热结合的分析方法,确定了管芯结构及工作电压。基于Load-pull测试获得GaN HEMT管芯的最佳输出功率和最佳效率阻抗,设计了一种带谐波匹配的高效率输出匹配电路,并通过引入有耗匹配,研制出了低压稳定的级间匹配电路。芯片面积为2.8 mm×2.6 mm,管芯漏极动态电压仿真峰值低于30 V,实测结温小于80℃,满足宇航Ⅰ级降额要求。功率放大器在17.5~18.0 GHz、漏压12 V(连续波)条件下,典型饱和输出功率2.5 W,附加效率38%,功率增益大于20 dB,线性增益大于27 dB,满足星载高效率要求。  相似文献   

6.
报道了一款采用0.15μm GaN功率MMIC工艺研制的功率放大器芯片。芯片工作在5G毫米波候选频段24.75~27.50GHz,采用三级放大结构。结合小信号参数和带有预匹配的Load-pull进行设计,末级匹配电路使用宽带匹配拓扑,在满足输出功率的条件下,尽可能降低损耗并兼顾效率匹配,以提升芯片附加效率;使用RCL稳定网络提高电路的稳定性,优化级间网络的版图布局提高功率分配网络和合成网络的幅相一致性;在输入级使用有耗匹配以降低芯片输入驻波。芯片在漏级电压24V连续波工作条件下,在24.5~27.5GHz范围内饱和输出功率大于34dBm(2.5 W),附加效率25%~30%。  相似文献   

7.
报道了一款采用0.25μm GaAs功率MMIC工艺研制的Ku波段功率放大器芯片。芯片采用三级放大拓扑结构,末级输出匹配电路按照高效率设计,同时优化前后级推动比控制前级电流。级间采用有耗匹配电路设计,提高大信号状态下的稳定性。在16~18GHz频带范围内漏压8.5V、脉宽1μs、占空比40%的工作条件下线性增益大于25dB;饱和输出功率大于12 W,饱和效率大于32%,功率增益大于21dB,功率增益平坦度小于±0.5dB。芯片尺寸为3.5mm×4.6mm。  相似文献   

8.
采用多级射频放大电路以及高压脉冲调制技术,实现了S波段高增益小型化200 W功率模块的研制。驱动放大电路采用GaAs功率单片进行功率合成;末级放大电路依托栅长(0.5 μm) GaN高电子迁移率晶体管(HEMT)芯片,选取多子胞结构来改善热分布,通过内匹配技术设计完成了双胞总栅宽24 mm GaN芯片的匹配网络,并设计高压脉冲调制电路提供电源,成功研制出了小型化的S波段200 W内匹配GaN功率模块。测试得出该模块实现了在输入功率10 dBm,栅极电压-5 V,漏极电压32 V,TTL调制信号输入条件下,输出频率在3.1~3.5 GHz处,输出功率大于200 W,功率附加效率(PAE)大于55%。模块实际尺寸为2.4 mm×38 mm×5.5 mm。  相似文献   

9.
报道了一款采用三级放大结构的Ku波段高效率GaN功率放大器芯片。放大器设计中通过电路布局优化改善功放芯片内部相位一致性,提高末级晶胞的合成效率,最终实现整个放大器功率及效率的提升。经匹配优化后放大器在14.6~17.0GHz频带内脉冲输出功率大于20 W,功率附加效率大于36%,最高39%。功率放大器芯片采用0.25μm GaN HEMT 101.6mm(4英寸)圆片工艺制造,芯片尺寸为2.3mm×1.9mm。  相似文献   

10.
为满足新型雷达对千瓦级大功率放大器的需求,采用0.25μm GaN HEMT工艺研制了一款输出功率大于2 000 W的X波段内匹配功率放大器。通过背势垒层结构与双场板结构提高器件击穿电压,使GaN HEMT管芯的工作电压达到60 V。通过负载牵引得到管芯最优阻抗,采用T型匹配网络和功率分配/合成器将管芯阻抗匹配到50Ω。在工作电压60 V、占空比1‰、脉宽5μs测试条件下,9.0~9.4 GHz频段内输出功率大于2 000 W,最大功率密度达到10.4 W/mm,功率增益大于7 dB,功率附加效率大于37.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号