首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
包宽  樊祥宁  李伟  章丽  王志功 《半导体学报》2012,33(1):015003-8
本文给出了一种应用于多模多标准接收机的宽带低噪声放大器的设计。采用噪声抵消技术实现了低噪声特性,同时采用栅极电感峰化技术实现了宽带平稳增益,进而提高了高频处得噪声性能。芯片在0.18 μm CMOS 工艺下制造,测试结果表明,该低噪放的-3dB带宽为2.5 GHz,增益为16 dB。在300 MHz 到2.2 GHz 带宽内的增益变化在0.8 dB之内。噪声系数为3.4 dB,不同频点处测得的平均IIP3 为-2 dBm。该低噪放的核心芯片面积为0.39mm2, 在1.8V供电电压下,抽取直流电流11.7 mA。  相似文献   

2.
王振朝  种少飞  韦子辉 《电视技术》2014,38(5):81-84,88
为了提高接收机接收灵敏度及通信距离,设计了一种433 MHz频段两级低噪声放大器。使用了一种在集电极串联感性反馈,使放大管处于绝对稳定状态的方法,采用等噪声圆及等功率圆进行了低噪声放大器的仿真设计,分析了放大管的稳定性、噪声系数、增益等参数。仿真及测试结果表明低噪声放大器在433 MHz频段,噪声系数0.6 dB,输入输出驻波比1.5,增益26 dB,将设计的低噪声放大器应用在433 MHz通信模块中,通信距离有显著提高。  相似文献   

3.
文中提出了一种X波段雷达接收机前端低噪声放大器的设计,该放大器选用性价比较高的伪形态高电子迁移率晶体管ATF36077,两级放大器电路分别按照最佳噪声系数和高增益的要求进行网络匹配设计。在设计过程中,引入噪声量度概念对总体电路的指标进行衡量,利用商业软件ADS进行电路的仿真与优化设计。仿真结果表明,该低噪声放大器在9310 MHz~9510 MHz 工作频段内,其噪声系数优于0.51 dB,增益大于20 dB,输出1 dB 压缩点为12.8 dBm。绘制版图,通过合理布局,整体结构紧凑,尺寸仅为42 mm×30 mm,可应用于X波段船舶导航雷达接收机前端中。  相似文献   

4.
文章主要介绍应用于集群接收机系统的350MHz~470MHz低噪声放大器,采用0.6μm CMOS工艺。探讨了优化低噪声放大器的噪声系数、增益与线性度的设计方法,同时对宽带输入输出匹配进行了分析。这种宽带低噪声放大器的工作带宽350MHz~470MHz,噪声系数小于3dB,增益为24dB,增益平坦度为±1dB,输入1dB压缩点大于-15dBm。  相似文献   

5.
高光辉  石玉  赵宝林 《电子科技》2013,26(12):67-69
设计并实现了一款覆盖GPS L1波段和北斗二代B1波段的低噪放模块。该模块中的低噪声放大器使用分立元件搭建,匹配电路调试灵活,满足了模块对输入输出驻波的高要求。测试结果表明,低噪放模块增益为26 dB,带内增益平坦,输入输出驻波<1.5,噪声系数<2 dB,带外抑制度80 dBc,输出1 dB压缩点8 dBm,满足了导航系统接收机前端对低噪放模块的要求。  相似文献   

6.
《电子与封装》2017,(8):33-35
为了降低接收机前端的噪声,设计了一种超宽带低噪声放大器。选用噪声较小、增益较高且工作电流较低的放大管,利用负反馈和宽带匹配技术,结合ADS和HFSS微波软件辅助设计,放大器在30 MHz~1700 MHz范围内,增益大于31 dB,平坦度小于±0.5 dB,噪声系数小于2.3 dB,驻波比小于1.6。  相似文献   

7.
介绍了一种基于ADS的C波段低噪声放大器的设计,同时分析了射频微波低噪声放大器的整体框图、主要指标以及具体的电路设计方法。低噪声放大器是无线通信接收机中的主要组成部分,低噪声放大器指标的好坏直接影响整个接收机的工作状况。该放大器采用射频场效应管ATF-36077作为主要放大器件,同时利用微带线设计了外围匹配电路,利用ADS强大的射频仿真与优化功能,最终实现了一个性能优良的C波段低噪声放大器。最后设计的放大器在3.7GHz4.2GHz增益为11dB,噪声系数为0.6dB,输入输出驻波比小于1.5。  相似文献   

8.
采用0.35μm SiGe BiCMOS工艺设计了用于S波段雷达接收机前端电路的低噪声放大器。对于现代无线接收机来说,其动态范围和灵敏度很大程度上都取决于低噪声放大器的噪声性能和线性度。相对于CMOS工艺来说,SiGe BiCMOS工艺具有更高的截止频率、更好的噪声性能和更高的电流增益,非常适合微波集成电路的设计。该低噪声放大器采用三级放大器级联的结构以满足高达30dB的增益要求。在5V的电源电压下,满足绝对稳定条件,在3GHz-3.5GHz频段内,功率增益为34.5dB,噪声系数为1.5dB,输出1dB功率压缩点为11dBm。  相似文献   

9.
微波低噪声放大器的设计与仿真   总被引:2,自引:2,他引:0  
常建刚 《通信技术》2009,42(1):128-130
低噪声放大器在接收系统中能降低系统的噪声和接收机灵敏度,是接收系统的关键部件。文中按照低噪声放大器电路的设计要求,完成了2GHz基站前端射频低噪声放大器的电路设计,并通过ADS仿真软件对电路进行仿真和优化。最终表明,采用本方案设计的LNA增益约为15dB,噪声系数约为1.2dB,性能稳定,完全达到了通信接收机中对LNA指标的要求。  相似文献   

10.
介绍低噪声放大器设计的理论基础,并重点介绍了低噪声放大器的主要性能指标:噪声系数、功率增益、驻波比、稳定性等。以ATF38143晶体管为例介绍了ADS仿真软件设计低噪声放大器的方法和主要步骤。采用三级级联结构设计出满足指标的S波段低噪声放大器链路。该放大器链路的指标为噪声系数小于1.2,功率增益大于50dB,增益平坦度小于0.5dB,VSWR小于1.8的低噪声放大器,带宽为6MHz,并具有一定的带外抑制能力。  相似文献   

11.
本文给出了一个采用TSMC 0.18 m CMOS工艺应用于X波段SAR(合成孔径雷达)的单片接收机射频前端的设计。接收机前端由低噪声放大器和混频器组成,低噪声放大器工作在9 GHz~11GHz,混频器将10GHz的射频信号转换到2GHz中频,本振信号由片外提供。在X波段频率下,尽管CMOS 0.18μm工艺特征频率比较低,工作仍然实现了低噪声系数,提高了集成度。测试结果表明,本设计在300MHz的带宽上实现了20dB的转换增益,噪声系数达到2.7Db,输入1dB压缩点达到-19.2dBm,在1.8V的电源电压下前端消耗26.6mA电流,芯片面积为1.3×0.97mm2。  相似文献   

12.
设计了一款应用在433MHz ASK接收机中的射频前端电路。在考虑了封装以及ESD保护电路的寄生效应的同时,从噪声、匹配、增益和线性度等方面详细讨论了低噪声放大器和下混频器的电路设计。采用0.18μm CMOS工艺,在1.8V的电源电压下射频前端电路消耗电流10.09 mA。主要的测试结果如下:低噪声放大器的噪声系数、增益、输入P1dB压缩点分别为1.35 dB、17.43 dB、-8.90dBm;下混频器的噪声系数、电压增益、输入P1dB压缩点分别为7.57dB、10.35dB、-4.83dBm。  相似文献   

13.
方方 《电子设计工程》2013,21(1):67-69,73
低噪声放大器是接收机中最重要的模块之一,文中采用了低噪声、较高关联增益、PHEMT技术设计的ATF-35176晶体管,设计了一种应用于5.5~6.5 GHz频段的低噪声放大器。为了获得较高的增益,该电路采用三级级联放大结构形式,并通过ADS软件对电路的增益、噪声系数、驻波比、稳定系数等特性进行了研究设计,最终得到LNA在该频段内增益大于32.8 dB,噪声小于1.5 dB,输入输出驻波比小于2,达到设计指标。  相似文献   

14.
采用自顶向下的设计方法,设计了工作于S波段的带宽为100MHz的雷达接收机前端电路。使用Agilent公司的ADS微波设计软件对系统性能给予了仿真论证。在系统性能仿真可行的情况下,分别设计出低噪声放大器、混频器、中频放大器模块,仿真结果均达到要求。前端仿真结果为:增益大于75dB,噪声系数小于3dB,镜相抑制度为60dB,灵敏度为-90dBm,动态范围为50dB。  相似文献   

15.
本文首先介绍了低噪声放大器的设计方法以及采用源极串联负反馈提高晶体管稳定性的原理,然后使用该方法设计了一个L波段低噪声放大器。仿真结果表明该放大器的噪声系数小于1dB,增益大于30dB。  相似文献   

16.
无线应用中的低噪声放大器设计与分析   总被引:1,自引:0,他引:1  
低噪声放大器在接收系统中能降低系统的噪声和提高接收机灵敏度,是接收系统的关键部件.描述了一种用于无线通信射频(RF)前端的低噪声放大器(LNA)的设计,先总体阐述了低噪声放大器的主要技术和性能指标,然后在采用ATF34143微波晶体管的基础上,依据低噪声放大器的各项指标来同步进行电路的设计、优化和ADS仿真,结果表明设计的低噪声放大器完全满足性能指标要求,其功率增益可达16dB,噪声系数(NF)在0.5dB以下.  相似文献   

17.
设计和制造了频率覆盖范围8~18GHz的宽带单片低噪声放大器。通频带内,其噪声系数小于4.3dB,相关增益8.5dB。新设计的低噪声放大器用于W波段(75~110GHz)接收机作为中频放大器。该放大器的射频性能适用范围宽,并且可以作为廉价的增益功能块。  相似文献   

18.
本文主要介绍了工作频率为840MHz低噪声放大器的设计方法和仿真步骤.以AVAGO公司的ATF58143器件为例,详细阐述了如何使用ADS软件进行设计和优化的过程.仿真结果显示噪声系数小于0.2,增益大于16dB,达到了预设的指标要求,可用于射频接收机前端.该方法对于使用ADS设计低噪声放大器电路提供了有用的参考价值.  相似文献   

19.
针对单片雷达接收机中对低噪声放大器(LNA)的要求,采用CMOS0.18m工艺设计了三级级联的镜像抑制低噪声放大器。通过在低噪声放大器中接入陷波滤波器,实现对镜像信号的衰减,从而减小了后端混频器电路的设计难度。在ADS中对放大器进行仿真,结果表明:在最大供电电压为5V、信号频段为3.0~3.2GHz时,中频输出225MHz,功率增益31dB,噪声系数(NF)0.5dB,输入输出1—dB点的功率分别为-19.5和11.5dBm,对镜像信号的抑制度达22dB。  相似文献   

20.
采用0.18μm CMOS工艺,针对DMB-T/H标准数字电视调谐器应用,设计了一个基于噪声抵消技术的宽带低噪声放大器.详细分析了噪声抵消技术的原理,给出了宽带低噪声放大器的设计过程.仿真结果表明,在48~862 MHz频率范围内输入输出反射系数均小于-20 dB,噪声系数低于3 dB,增益大于17 dB,1 dB压缩点为-6dBm.在1.8V电压下,电路功耗为10.8mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号