首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A modified response analysis in the form of an orthotide parametrization is used to derive major semi‐diurnal and diurnal tidal constituents over the Newfoundland and Scotian Shelves from TOPEX/POSEIDON altimeter data. The orthotide formulation simultaneously solves for eight major semi‐diurnal and diurnal constituents, and has an accuracy of better than ~1.5 cm for each constituent. Tidal elevations are derived from the altimeter data on the ascending and descending satellite ground tracks, and interpolated using the method of statistical interpolation. The semi‐diurnal constituents (M2, S2 and N2) compare favourably with available in‐situ observations and a numerical model. The diurnals (K1 and O1) are not as accurate as the semi‐diurnals, especially in the nearshore environment. The paper demonstrates the ability of TOPEX/POSEIDON altimetry to provide accurate tidal data over a continental shelf.  相似文献   

2.
The stratospheric concentrations of many minor constituents change rapidly at sunrise or sunset. If this happens, there is an inherent error when retrieving the vertical profiles of the constituents from measurements of their absorption of sunlight. For retrievals of NO at sunset the error can be estimated from in-situ measurements alone, without appeal to a model of stratospheric photochemistry. Below 20 km this error can approach 100% so that the retrieved NO is zero. But at 40 km, and at 25 km when the absorption is strong and Lorentzian, it can be less than 20%. Precise calculations of the error, even if small, require model calculations of the sunset and sunrise changes. With a model, we have calculated the error for NO, NO2, OH and ClO.  相似文献   

3.
Functional relationships linking at λ0=351 nm aerosol extinction αλ0aer and backscatter coefficient βλ0aer of maritime and desert type aerosols are determined to allow for inversion of the single-wavelength lidar signals. Such relationships are derived as mean behavior of 20,000 extinction versus backscatter computations, performed for aerosol size distributions and compositions whose describing parameters are randomly chosen within the naturally observed variability. For desert-type aerosols, the effect of the particle non-sphericity is considered and it is shown that the extinction to backscatter ratio of non-spherical dust particles can be up to 60% larger than the values obtained for spherical particles. Aerosol extinction and backscatter coefficient profiles obtained inverting the single-wavelength lidar signal with the modeled relationships are then compared to the same profiles measured by a combined elastic-Raman lidar operating at 351 nm. Analytical back trajectories and satellite images are used to characterize advection patterns during lidar measurements and to properly choose the modeled functional relationship. A good accordance between the two techniques is found for advection patterns over the lidar site typical of maritime and dust conditions. Maximum differences between the model-based αλ0aer and βλ0aer vertical profiles and the corresponding ones measured by the combined elastic-Raman lidar technique are of 30% and 40% in maritime and desert dust conditions, respectively. The comparison of elastic-Raman lidar measurements and model-based results also reveals that particle non-sphericity must be taken into account when mineral dust-type aerosols are directly advected over the measurement site.  相似文献   

4.
Six years of observations (1980 to 1986) of the composition of lower tropospheric aerosols at Alert on northern Ellesmere Island in the Canadian high Arctic yield insight into the seasonal variation of Arctic air pollutants as well as of substances of natural origin. A principal component analysis of 138 observations of 21 aerosol constituents (major ions, metals, nonmetallic trace elements) for the most polluted period of December to April identified not only a soil, sea salt and anthropogenic aerosol component, but also one associated with photochemical reactions in the atmosphere that occur at polar sunrise. Depending on the source of their gaseous precursors, elements in the photochemical component can be natural or anthropogenic in origin. For instance, SO4 2-, existing mostly as H2SO4, originates probably from both anthropogenic and natural sources while Br is likely of marine origin. In contrast, SO4 2- in the anthropogenic component has the stoichiometry of NH4HSO4. In the winter months, over 90% of Arctic SO4 2- is in the anthropogenic and photochemical components.In winter, a substantial portion (11 to 35%) of Na+ is associated with the anthropogenic aerosol component suggesting either that marine aerosols have been physically or chemically modified by interactions with air pollution or that there are anthropogenic sources of Na+.The aerosol soil component is controlled by both local and distant dust sources. During a year, it has two peaks at Alert, one in April/May coinciding with the Asian dust storm season and one in September.There is a marked difference in the seasonal variation of particulate Br and iodine concentrations in the air. Both have a peak in April/May associated with polar sunrise and, hence, photochemical reactions in the atmosphere. However, iodine also peaks in early fall. This may be a product of biogenic iodine emissions to the atmosphere during secondary blooms in northern oceans in late summer.Presented at the Second Conference on Baseline Observations in Atmospheric Chemistry (SABOAC II) in Melbourne, Australia, November 1988  相似文献   

5.
Far-infrared emission spectroscopy has beendemonstrated to be a valuable method for remotesensing of trace species in the stratosphere, with theability to simultaneously detect a number of keychemical species. SAFIRE-A is a new far-infraredFourier Transform (FT) spectrometer which has beenspecifically designed to operate on board of a highaltitude aircraft in the lower stratosphere and uppertroposphere regions where relatively few remotesensing measurements have been made. Using newtechnology, the sensitivity of the FT spectrometermethod has been substantially improved for the longwavelength region. Results are reported formeasurements of O3, HNO3 and N2O at 17and 19 km using a detection window near 23 cm-1.Geographical and altitude variability of the volumemixing ratio of these constituents and their relativecorrelation are discussed. Ozone measurements agreewell with in situ measurements, except in regions ofstrong stirring and mixing associated with deformationof the northern vortex edge. Whilst SAFIREmeasurements of trace gases do not capture all of thelocal variability seen by rapid in-situ techniques,they can indicate horizontal variability close to, butnot intercepted by, the aircraft's flight path. Apossible detection of ClO at the low background levelsexpected outside the polar vortex is also reported.  相似文献   

6.
The aim of this work is assessment of regional atmospheric influence on satellite derivation of Adriatic Sea surface temperature (SST). To this end the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-40 reanalysis dataset has been employed to provide the temperature and humidity profiles and surface data, while the RTTOV 8.7 radiative transfer model was used to calculate the top-of-atmosphere brightness temperatures for the advanced very high-resolution radiometer (AVHRR) channels. Ten ERA-40 grid points over the Adriatic Sea were used in the analysis, providing 29,590, 00 UTC and 12 UTC, clear-sky profiles. Climatological analysis of the ERA-40 profiles demonstrated distinct seasonal variability over the Adriatic Sea. Seasonality noted in the temperature and specific humidity profiles also evinced in the atmospheric transmittance, thermal channels temperature deficit, and derived γ and ρ parameters. A multivariate analysis was applied to relate the simulated top-of-atmosphere brightness temperatures to the Adriatic SSTs in order to generate exploratory sets of SST retrieval coefficients. All derived coefficient sets exhibited smaller noise amplification factor than the global counterpart. A test comparison of satellite-derived SST with an 11-month in situ SST series showed than locally derived coefficients provide smaller scatter (improved precision), and skin-centred bias that requires additional adjustment. Almost identical SST residual and error metric was obtained with seasonally adjusted classical split-window coefficients and with coefficients explicitly accommodating water-vapor dependence. Comparison with data reinforces the notion that the atmosphere over the Adriatic may exhibit variability that cannot be fully accommodated by globally adjusted correction.  相似文献   

7.
Abstract

We analyse time series records of isopleth depths derived from two extended sequences of hourly and bi‐hourly sampled profiles taken at Ocean Weather Station P during the summers of 1961 and 1969. Vertical displacements to 240‐m depth are mainly of semidiurnal frequency with r.m.s. amplitudes of 1–4 m. Displacements at diurnal and near‐inertial frequencies are typically less than a metre and have little statistical significance. Within the semidiurnal band, motions appear to be predominantly at the principal solar (S2) rather than the principal lunar (M2) semidiurnal frequency. The phase of the M2 baroclinic tide is roughly equal to that of the M2 barotropic tide (as extrapolated from coastal and seamount observations); phases of other constituents differ appreciably from barotropic values.  相似文献   

8.
Compact two-channel IR radiometers for solar occultation experiments have been constructed in order to measure concentration profiles of stratospheric trace gases. The instruments can be used as filter-or gas correlation-type radiometers depending on the trace gas under investigation. Within the LIMS correlative measurement program, balloon flights were performed with a payload of up to four of these two-channel radiometers. From the gas correlation-type measurements, profiles of the trace gas NO2 are inferred for the altitude region between about 20 km and the balloon float level. The data evaluation also includes a comprehensive analysis of the error sources and their effect on the accuracy of the NO2 profiles. The derived profiles are compared among themselves and are assessed against the observations of other authors by accounting for the diurnal, latitudinal and seasonal changes of NO2. As a by-product of our measurements, the mean absorption of the O2 collision-induced band at 6.4 m was determined within the range of the interference filter used and compared with calculations based on known absorption coefficients.  相似文献   

9.
When all balloon-borne measurements of NO2 in the stratosphere are reviewed, the profiles show a wide spread. Measurements of the total amount in a vertical column suggest that variability should be low when only profiles measured at mid-latitudes close to equinox are selected. With this selection, the standard deviation of the profiles measured by each technique is often less than ±20%, but the mean profiles measured by each technique differ by up to a factor 2. Despite the profiles not being measured simultaneously, these differences are identical to those revealed by the simultaneous measurements of the Balloon Intercomparison Campaigns of 1982 and 1983-a comparison can be made from the historic data alone. This suggests that measurements of other gases should be similarly reviewed and appropriate selection criteria be found that reduces the standard deviations of the measurements by any one technique. The techniques can then be intercompared without new simultaneous flights.  相似文献   

10.
Abstract

The dependence of ozone formation on the mixing ratios of volatile organic compounds (VOCs) and nitrogen oxides (NOx) has been widely studied. In addition to the atmospheric levels of VOCs and NOx, the extent of photochemical processing of VOCs has a strong impact on ozone levels. Although methods for measuring atmospheric mixing ratios of VOCs and NOx are well established and results of those measurements are widely available, determination of the extent of photochemical processing of VOCs, known as photochemical age (PCA), is difficult. In this article a recently developed methodology for the determination of PCA for individual compounds based on the change in their stable carbon isotope composition is used to investigate the dependence between ozone and VOC or NOx mixing ratios at a rural site in Ontario, Canada, during fall and winter. The results show that under these conditions the variability in VOC mixing ratios is predominantly a result of the varying impact of local emissions and not a result of changes in the extent of atmospheric processing. This explains why the mixing ratio of ozone shows no systematic dependence on the mixing ratios of VOCs or NOx in this environment and at this time of the year.  相似文献   

11.
A meteorological analysis is presented for environmental data set obtained from the Canadian Arctic haze study, which is part of AGASP-II. Results of the study indicated that atmospheric carbon dioxide (CO2), methane (CH4), sulphate (SO4 =), ozone (O3) and other air pollutants observed at Alert, N.W.T. underwent periodical fluctuations. It was found that high concentrations of these atmospheric constituents were associated with a deep (1430–2074 m) inversion and with a major anticyclone. In contrast, relatively low values of these constituents were associated with a cyclonic disturbance near Alert. High concentrations of these constituents occurred with air trajectories coming from the N-W direction, while low values occurred with S trajectories. In addition, examinations of satellite imagery with other meteorological data suggested that volcanic inputs of ash and gases from Augustine Island, Alaska were negligible for the observed high values of these constituents at the ground level at Alert.  相似文献   

12.
Observations show that there was change in interannual North Atlantic Oscillation (NAO) variability in the mid-1970s. This change was characterized by an eastward shift of the NAO action centres, a poleward shift of zonal wind anomalies and a downstream extension of climate anomalies associated with the NAO. The NAO interannual variability for the period after the mid-1970s has an annular mode structure that penetrates deeply into the stratosphere, indicating a strengthened relationship between the NAO and the Arctic Oscillation (AO) and strengthened stratosphere-troposphere coupling. In this study we have investigated possible causes of these changes in the NAO by carrying out experiments with an atmospheric GCM. The model is forced either by doubling CO2, or increasing sea surface temperatures (SST), or both. In the case of SST forcing the SST anomaly is derived from a coupled model simulation forced by increasing CO2. Results indicate that SST and CO2 change both force a poleward and eastward shift in the pattern of interannual NAO variability and the associated poleward shift of zonal wind anomalies, similar to the observations. The effect of SST change can be understood in terms of mean changes in the troposphere. The direct effect of CO2 change, in contrast, can not be understood in terms of mean changes in the troposphere. However, there is a significant response in the stratosphere, characterized by a strengthened climatological polar vortex with strongly enhanced interannual variability. In this case, the NAO interannual variability has a strong link with the variability over the North Pacific, as in the annular AO pattern, and is also strongly related to the stratospheric vortex, indicating strengthened stratosphere-troposphere coupling. The similarity of changes in many characteristics of NAO interannual variability between the model response to doubling CO2 and those in observations in the mid-1970s implies that the increase of greenhouse gas concentration in the atmosphere, and the resulting changes in the stratosphere, might have played an important role in the multidecadal change of interannual NAO variability and its associated climate anomalies during the late twentieth century. The weak change in mean westerlies in the troposphere in response to CO2 change implies that enhanced and eastward extended mid-latitude westerlies in the troposphere might not be a necessary condition for the poleward and eastward shift of the NAO action centres in the mid-1970s.  相似文献   

13.
Abstract

The development of a tidal model for the west coast of Canada is described. The model is intermediate in resolution between coarse‐gridded global models and fine‐gridded local models; it provides a good representation of the main shelf regions and also includes a substantial area of the neighbouring ocean. The physical processes relevant to tides in both deep and shallow water are included. Calculations have been carried out for the M2 and K1 constituents and the model results were compared with extensive tide‐gauge observations and empirically based charts. For M2, the agreement between model results and observations is generally excellent, but for K1, which contains more small‐scale variability, the model results are not quite so good. The variability in K1 is associated with tidally generated continental shelf waves. Examination of the computed currents and energy fluxes suggests that shelf‐wave components are present in the model solution but, for the Vancouver Island shelf, their propagation is not reproduced accurately. This may be due to deficiencies in the model and/or to the influences of stratification and mean currents, which are neglected here. The model predicts that shelf‐wave components should also occur in diurnal tides on the Alaskan shelf.

The significance of the tide‐generating potential and advection are also examined and further work proposed.  相似文献   

14.
The chemical reactivity of NO and NO2 is so rapid that their fluxes and concentrations can be considerably modified from that expected for conserved variables in the atmospheric surface layer, even as low as a meter above the surface. Fitzjarrald and Lenschow (1983) have calculated flux and mean concentration profiles for NO, NO2 and O3 in the surface layer using numerical techniques. However, their solutions do not approach the photostationary state at large heights. Here we solve a simpler set of equations analytically (i.e. we assume a constant O3 concentration and neutral hydrodynamic stability), and are able to show how the flux profiles behave at large heights assuming that the concentrations approach their photostationary values. We find, for example, that at large heights the ratio of the flux of NO to that of NO2 is equal to the ratio of their concentrations. These results are relevant to estimating surface fluxes of NO and NO2, and are most applicable to nonurban environments where NO and NO2 concentrations are usually much less than O3 concentration.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
We have investigated the problem of testing photochemical theory using solar occultation data. We show, simply using a diurnal model, that for many steady-state relationships sunrise and sunset are not good times for performing quantitative tests. Departures should be expected between the true profile of a substance and that derived using a steady-state argument. Critical tests of theory can, however, be made by considering what we call the rate ratio of a species. A rate ratio, ø, is defined as the ratio of the rate of production to the rate of loss of the species under consideration. This is a simple way to quantify departures from steady-state. Using ATMOS data rate ratios for NO2, ClONO2. HNO4 and N2O5 have been evaluated. These can then be compared with theoretical (model) predictions of the relevant rate ratio. The tests performed confirm our general understanding of the chemistry controlling these species. To make firm conclusions, the measurement of all the relevant parameters would be required. The usefulness in applying rate ratios to measurements made at occultation times is demonstrated.  相似文献   

16.
A short review is given of the different methods by which latent heat fluxes (or evaporation) over oceans are determined. In more detail, the applicability of the bulk aerodynamical formula is discussed. This formula is mainly used for climatological studies of heat fluxes and for the application of satellite data. As an example, for climatological studies we selected the work of Isemer and Hasse, who did a re-processing of the so-called Bunker data set to determine heat fluxes over the North Atlantic Ocean. In order to check their results, Isemer and Hasse calculated the annual mean heat budget for each latitudinal delt and derived from it the required ocean heat transport. With the aid of inverse modelling, the derived ocean transport was compared with the observed ocean transport and some of the used coefficients (e.g. bulk coefficients for latent and sensible heat flux) were altered. Though the ocean heat transport is changed by a large amount (at the equator 0.3 PW, original Bunker data; 0 PW, Isemer and Hasse; 0.76 PW, after inverse modelling (all northwards)) the overall patterns of the fields of the energy fluxes remain almost unchanged. The bulk coefficient for latent heat flux for example is altered by 5.6%.The geophysical parameters necessary for the bulk aerodynamic method can be determined from satellite observations: SST, q0, u0. Studies are described which used data from a microwave radiometer on SEASAT and NIMBUS7 to determine latent heat flux. An error calculation shows that the obtained accuracy is between 26 and 35 W m−2. This accuracy is adequate enough to allow reasonable estimates to be made of these fluxes. More satellites are planned for launch with microwave radiometers and scatterometers which will increase the possibility of determining geophysical parameters more accurately for use in the bulk aerodynamic formula. They will provide the database from which large-scale fieldsof latent heat flux (for time scales shorter than a month or even for actual situations) can be derived.  相似文献   

17.
A long-term record of surface currents from a high-frequency radar system, along with near-surface hydrographic transects, moored current meter records, and satellite imagery, are analyzed to determine the relative importance of river discharge, wind, and tides in driving the surface flow in the Fraser River plume. The observations show a great deal of oceanographic and instrumental variability. However, averaged quantities yielded robust results. The effect of river flow, which determines buoyancy and inertia near the river mouth, was found by taking a long-term average. The resulting flow field was dominated by a jet with two asymmetric gyres; the anticyclonic gyre to the north had flow speeds consistent with geostrophy. The mean flow speed near the river mouth was 14.3?cm?s–1, while the flow further afield was 5?cm?s–1 or less. Wind stress and surface currents were highly coherent in the subtidal frequency band. Northwesterly winds drive a surface flow to the southeast at speeds of nearly 30?cm?s–1. Southeasterly winds drive a surface flow to the northwest at speeds reaching 20?cm?s–1; however, there is more spatial variability in speed and direction relative to the northwesterly wind case. A harmonic analysis was used to extract the tidally driven flows. Ellipse parameters for the major tidal constituents varied considerably in both alignment and aspect ratio over the radar domain, in direct contrast to a barotropic model which predicted rectilinear flow along the Strait of Georgia. This is a result of water filling and draining the shallow mud flats north of the Fraser's main channel. The M2 velocities at the surface were also weaker than their barotropic counterparts. However, the shallow water constituent MK3 was enhanced at the surface and nearly as strong as the mean flow, implying that non-linear interactions are important to surface dynamics.  相似文献   

18.
The measurement of atmospheric O2 concentrations and related oxygen budget have been used to estimate terrestrial and oceanic carbon uptake. However, a discrepancy remains in assessments of O2 exchange between ocean and atmosphere (i.e. air-sea O2 flux), which is one of the major contributors to uncertainties in the O2-based estimations of the carbon uptake. Here, we explore the variability of air-sea O2 flux with the use of outputs from Coupled Model Intercomparison Project phase 6 (CMIP6). The simulated air-sea O2 flux exhibits an obvious warming-induced upward trend (~1.49 Tmol yr?2) since the mid-1980s, accompanied by a strong decadal variability dominated by oceanic climate modes. We subsequently revise the O2-based carbon uptakes in response to this changing air-sea O2 flux. Our results show that, for the 1990?2000 period, the averaged net ocean and land sinks are 2.10±0.43 and 1.14±0.52 GtC yr?1 respectively, overall consistent with estimates derived by the Global Carbon Project (GCP). An enhanced carbon uptake is found in both land and ocean after year 2000, reflecting the modification of carbon cycle under human activities. Results derived from CMIP5 simulations also investigated in the study allow for comparisons from which we can see the vital importance of oxygen dataset on carbon uptake estimations.  相似文献   

19.
Measurements of the sum of peroxy radicals [HO2 + RO2],NOx (NO + NO2) and NOy (the sum of oxidisednitrogen species) made at Mace Head, on the Atlantic coast of Ireland in summer 1996 and spring 1997 are presented. Together with a suite of ancillary measurements, including the photolysis frequencies of O3 O(1D)(j(O1D)) and NO2 (j(NO2)), the measured peroxy radicals are used to calculate meandailyozone tendency (defined as the difference of the in-situphotochemical ozone production and loss rates); these values are compared with values derived from the photochemical stationary state (PSS) expression. Although the correlation between the two sets of values is good, the PSS values are found to be significantly larger than those derived from the peroxy radical measurements, on average, in line with previous published work. Possible sources of error in these calculations are discussed in detail. The data are further divided up into five wind sectors, according to the instantaneous wind direction measured at the research station. Calculation of mean ozone tendencies by wind sector shows that ozone productivity was higher during spring (April–May) 1997 than during summer (July–August) 1996across all airmasses, suggesting that tropospheric photochemistry plays an important role in the widely-reported spring ozone maximum in the Northern Hemisphere. Ozone tendencies were close to zero for the relatively unpolluted south-west, west and north-west wind sectors in the summer campaign, whereas ozone productivity was greatest in the polluted south-east sector for both campaigns. Daytime weighted average ozone tendencies were +(0.3± 0.1) ppbv h–1 for summer 1996 and +(1.0± 0.5) ppbvh–1 for spring 1997. These figures reflect the higher mixing ratios of ozone precursors in spring overall, as well as the higher proportion of polluted air masses from the south-east arriving at the site during the spring campaign. The ozone compensation point, where photochemical ozone destruction and production processes are in balance, is calculated to be ca. 14 pptv NO for both campaigns.  相似文献   

20.
The heterogeneous removal of N2O5 by sulphuric acid aerosols as been invoked to explain the decline of mid-latitude ozone in the last decade. We have used a photochemical model to study measurements of odd-nitrogen made by Spacelab 3. The gas-phase photochemical model overestimates the amount of N2O5 present. The loss of N2O5 by aerosols does reduce N2O5, but is likely to be slower than assumed in WMO (1992). The sunset measurements at 25.5 km cannot be explained by heterogeneous loss of N2O5 and is more likely to be due to a faster photolysis than assumed. New absorption cross-sections of HNO3 reduce the photolysis of HNO3 so that the model with gas-phase chemistry only gives better agreement at 19 km, than a model including heterogeneous chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号