首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
2.
陈雅琳  李巍  汪天洋  周雪琴  刘东志 《化工进展》2016,35(12):3985-3990
研究发现非小细胞肺癌的形成与多种致癌突变密切相关,其中间变性淋巴瘤激酶重排备受关注,针对棘皮动物微管相关蛋白质4-间变性淋巴瘤激酶融合基因的抑制剂克唑替尼对于治疗晚期ALK阳性非小细胞肺癌患者是有效的,2011年获得美国食品药品监督管理局批准上市,但出现了耐药性,第二代间变性淋巴瘤激酶抑制剂的出现,克服了耐药机制,并显示出治疗非小细胞肺癌患者的活性。本论文按化学结构的不同介绍了克唑替尼、Ceritinib、Alectinib、Brigatinib、RXDX-101、PF-06463922、ASP3026、X-396、CEP-37440等间变性淋巴瘤激酶抑制剂及临床研究等,为非小细胞肺癌的靶向治疗药物的开发提供了参考。  相似文献   

3.
The insulin-like growth factor 1 (IGF1) signaling pathway mediates multiple cancer cell biological processes. IGF1 receptor (IGF1R) expression has been used as a reporter of the clinical significance of non-small-cell lung carcinoma (NSCLC). However, the association between IGF1R genetic variants and the clinical utility of NSCLC positive for epidermal growth factor receptor (EGFR) mutation is not clear. The current study investigated the association between the IGF1R genetic variants, the occurrence of EGFR mutations, and clinicopathological characteristics in NSCLC patients. A total of 452 participants, including 362 adenocarcinoma lung cancer and 90 squamous cell carcinoma lung cancer patients, were selected for analysis of IGF1R genetic variants (rs7166348, rs2229765, and rs8038415) using real-time polymerase chain reaction (PCR)genotyping. The results indicated that GA + AA genotypes of IGF1R rs2229765 were significantly associated with EGFR mutation in female lung adenocarcinoma patients (odds ratio (OR) = 0.39, 95% confidence interval (CI) = 0.17–0.87). Moreover, The GA + AA genotype IGF1R rs2229765 was significantly associated with EGFR L858R mutation (p = 0.02) but not with the exon 19 in-frame deletion. Furthermore, among patients without EGFR mutation, those who have at least one polymorphic A allele of IGF1R rs7166348 have an increased incidence of lymph node metastasis when compared with those patients homozygous for GG (OR, 2.75; 95% CI, 1.20–2.31). Our results showed that IGF1R genetic variants are related to EGFR mutation in female lung adenocarcinoma patients and may be a predictive factor for tumor lymph node metastasis in Taiwanese patients with NSCLC.  相似文献   

4.
5.
Tyrosine kinase inhibitors (TKIs) are very efficacious in non-small-cell lung cancer (NSCLC) patients harboring activating Epidermal Growth Factor Receptor (EGFR) mutations. However, about 10% of EGFR wild type (wt) patients respond to TKI, with unknown molecular mechanisms of sensitivity. We considered a case series of 34 EGFR wt NSCLC patients responsive to erlotinib after at least one line of therapy. Responsive patients were matched with an equal number of non-responsive EGFR wt patients. A panel of 26 genes, for a total of 214 somatic mutations, was analyzed by MassARRAY® System (Sequenom, San Diego, CA, USA). A 15% KRAS mutation was observed in both groups, with a prevalence of G12C in non-responders (80% vs. 40% in responders). NOTCH1, p53 and EGFR-resistance-related mutations were found more frequently in non-responders, whereas EGFR-sensitizing mutations and alterations in genes involved in proliferation pathways were more frequent in responders. In conclusion, our findings indicate that p53, NOTCH1 and exon 20 EGFR mutations seem to be related to TKI resistance. KRAS mutations do not appear to influence the TKI response, although G12C mutation is more frequent in non-responders. Finally, the use of highly sensitive methodologies could lead to the identification of under-represented EGFR mutations potentially associated with TKI sensitivity.  相似文献   

6.
Lung cancer has long been recognized as an extremely heterogeneous disease, since its development is unique in every patient in terms of clinical characterizations, prognosis, response and tolerance to treatment. Personalized medicine refers to the use of markers to predict which patient will most likely benefit from a treatment. In lung cancer, the well-developed epidermal growth factor receptor (EGFR) and the newly emerging EML4-anaplastic lymphoma kinase (ALK) are important therapeutic targets. This review covers the basic mechanism of EGFR and EML4-ALK activation, the predictive biomarkers, the mechanism of resistance, and the current targeted tyrosine kinase inhibitors. The efficacy of EGFR and ALK targeted therapies will be discussed in this review by summarizing the prospective clinical trials, which were performed in biomarker-based selected patients. In addition, the revolutionary sequencing and systems strategies will also be included in this review since these technologies will provide a comprehensive understanding in the molecular characterization of cancer, allow better stratification of patients for the most appropriate targeted therapies, eventually resulting in a more promising personalized treatment. The relatively low incidence of EGFR and ALK in non-Asian patients and the lack of response in mutant patients limit the application of the therapies targeting EGFR or ALK. Nevertheless, it is foreseeable that the sequencing and systems strategies may offer a solution for those patients.  相似文献   

7.
In the scenario of systemic treatment for advanced non-small cell lung cancer (NSCLC) patients, one of the most relevant breakthroughs is represented by targeted therapies. Throughout the last years, inhibitors of the epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), c-Ros oncogene 1 (ROS1), and V-raf murine sarcoma viral oncogene homolog B (BRAF) have been approved and are currently used in clinical practice. However, other promising molecular drivers are rapidly emerging as therapeutic targets. This review aims to cover the molecular alterations with a potential clinical impact in NSCLC, including amplifications or mutations of the mesenchymal–epithelial transition factor (MET), fusions of rearranged during transfection (RET), rearrangements of the neurotrophic tyrosine kinase (NTRK) genes, mutations of the Kirsten rat sarcoma viral oncogene (KRAS) and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), as well as amplifications or mutations of human epidermal growth factor receptor 2 (HER2). Additionally, we summarized the current status of targeted agents under investigation for such alterations. This revision of the current literature on emerging molecular targets is needed as the evolving knowledge on novel actionable oncogenic drivers and targeted agents is expected to increase the proportion of patients who will benefit from tailored therapeutic approaches.  相似文献   

8.
Background: Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Chemotherapy, the treatment of choice in non-operable cases, achieves a dismal success rate, raising the need for new therapeutic options. In about 25% of NSCLC, the activating mutations of the KRAS oncogene define a subclass that cannot benefit from tyrosine kinase inhibitors (TKIs). The tumor suppressor miR-16 is downregulated in many human cancers, including NSCLC. The main objectives of this study were to evaluate miR-16 treatment to restore the TKI sensitivity and compare its efficacy to MEK inhibitors in KRAS-mutated NSCLC. Methods: We performed in vitro and in vivo studies to investigate whether miR-16 could be exploited to overcome TKI resistance in KRAS-mutated NSCLC. We had three goals: first, to identify the KRAS downstream effectors targeted by mir-16, second, to study the effects of miR-16 restoration on TKI resistance in KRAS-mutated NSCLC both in vitro and in vivo, and finally, to compare miR-16 and the MEK inhibitor selumetinib in reducing KRAS-mutated NSCLC growth in vitro and in vivo. Results: We demonstrated that miR-16 directly targets the three KRAS downstream effectors MAPK3, MAP2K1, and CRAF in NSCLC, restoring the sensitivity to erlotinib in KRAS-mutated NSCLC both in vitro and in vivo. We also provided evidence that the miR-16–erlotinib regimen is more effective than the selumetinib–erlotinib combination in KRAS-mutated NSCLC. Conclusions: Our findings support the biological preclinical rationale for using miR-16 in combination with erlotinib in the treatment of NSCLC with KRAS-activating mutations.  相似文献   

9.
We aimed to reveal the true status of epidermal growth factor receptor (EGFR) mutations in Chinese patients with non-small cell lung cancer (NSCLC) after lung resections. EGFR mutations of surgically resected fresh tumor samples from 697 Chinese NSCLC patients were analyzed by Amplification Refractory Mutation System (ARMS). Correlations between EGFR mutation hotspots and clinical features were also explored. Of the 697 NSCLC patients, 235 (33.7%) patients had tyrosine kinase inhibitor (TKIs) sensitive EGFR mutations in 41 (14.5%) of the 282 squamous carcinomas, 155 (52.9%) of the 293 adenocarcinomas, 34 (39.5%) of the 86 adenosquamous carcinomas, one (9.1%) of the 11 large-cell carcinomas, 2 (11.1%) of the 18 sarcomatoid carcinomas, and 2 (28.6%) of the 7 mucoepidermoid carcinomas. TKIs sensitive EGFR mutations were more frequently found in female patients (p < 0.001), non-smokers (p = 0.047) and adenocarcinomas (p < 0.001). The rates of exon 19 deletion mutation (19-del), exon 21 L858R point mutation (L858R), exon 21 L861Q point mutation (L861Q), exon 18 G719X point mutations (G719X, including G719C, G719S, G719A) were 43.4%, 48.1%, 1.7% and 6.8%, respectively. Exon 20 T790M point mutation (T790M) was detected in 3 squamous carcinomas and 3 adenocarcinomas and exon 20 insertion mutation (20-ins) was detected in 2 patients with adenocarcinoma. Our results show the rates of EGFR mutations are higher in all types of NSCLC in Chinese patients. 19-del and L858R are two of the more frequent mutations. EGFR mutation detection should be performed as a routine postoperative examination in Chinese NSCLC patients.  相似文献   

10.
Osimertinib is the latest generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor used for patients with EGFR-mutated non-small cell lung cancer (NSCLC). We aimed to explore the novel mechanisms of osimertinib by particularly focusing on EGFR-independent effects, which have not been well characterized. We explored the EGFR-independent effects of osimertinib on cell proliferation using NSCLC cell lines, an antibody array analysis, and the association between the action of osimertinib and the ephrin receptor B4 (EphB4). We also studied the clinicopathological significance of EphB4 in 84 lung adenocarcinoma patients. Osimertinib exerted significant inhibitory effects on cell growth and cell cycle progression by promoting the phosphorylation of p53 and p21 and decreasing cyclin D1 expression independently of EGFR. EphB4 was significantly suppressed by osimertinib and promoted cell growth and sensitivity to osimertinib. The EphB4 status in carcinoma cells was positively correlated with tumor size, T factor, and Ki-67 labeling index in all patients and was associated with poor relapse-free survival in EGFR mutation-positive patients. EphB4 is associated with the EGFR-independent suppressive effects of osimertinib on cell cycle and with a poor clinical outcome. Osimertinib can exert significant growth inhibitory effects in EGFR-mutated NSCLC patients with a high EphB4 status.  相似文献   

11.
The deubiquitinating enzyme USP14 has been identified and biochemically studied, but its role in lung cancer remains to be elucidated. The aim of this study was to evaluate the prognostic significance of USP14 in patients with lung adenocarcinoma and to define its role in lung cancer cell proliferation. USP14 mRNA levels in different non-small cell lung cancer (NSCLC) cell lines were detected by real-time qPCR. USP14 protein levels in surgically resected samples from NSCLC patients, and in NSCLC cell lines, were detected by immunohistochemistry or Western blot. The correlation of USP14 expression with clinical characteristics and prognosis was determined by survival analysis. After silencing USP14, cell proliferation was assessed by MTT assay and the cell cycle was measured by FACS assay. It was found that USP14 expression was upregulated in NSCLC cells, especially in adenocarcinoma cells. Over-expression of USP14 was associated with shorter overall survival of patients. Downregulation of USP14 expression arrested the cell cycle, which may be related to β-catenin degradation. Over-expression of USP14 was associated with poor prognosis in NSCLC patients and promoted tumor cell proliferation, which suggests that USP14 is a tumor-promoting factor and a promising therapeutic target for NSCLC.  相似文献   

12.
The current standard of care for advanced non-small-cell lung cancer is based on detecting actionable mutations that can benefit from targeted therapy. Comprehensive genetic tests can have long turn-around times, and because EGFR mutations are the most prevalent actionable mutation, a quick detection would enable a prompt initiation of targeted therapy. Furthermore, the scarcity of diagnostic material means that sometimes only cytologic material is available. The Idylla™ EGFR assay is a real-time PCR–based method able to detect 51 EGFR mutations in 2.5 h. Idylla is validated for use only on FFPE sections, but some researchers described their experiences with cytological material. We reviewed the relevant literature, finding four articles describing 471 cases and many types of cytological input material: smears, cell-block sections, suspensions, and extracted DNA. The sensitivity, specificity, and limit of detection appear comparable to those obtained with histological input material, with one exception: the usage of scraped stained smears as input may reduce the accuracy of the test. In conclusion, usage of cytological material as input to the Idylla EGFR test is possible. A workflow where common mutations are tested first and fast, leaving rarer mutations for subsequent comprehensive profiling, seems the most effective approach.  相似文献   

13.
Aberrant activation of the epidermal growth factor receptor (EGFR/ERBB1) by erythroblastic leukemia viral oncogene homolog (ERBB) ligands contributes to various tumor malignancies, including lung cancer and colorectal cancer (CRC). Epiregulin (EREG) is one of the EGFR ligands and is low expressed in most normal tissues. Elevated EREG in various cancers mainly activates EGFR signaling pathways and promotes cancer progression. Notably, a higher EREG expression level in CRC with wild-type Kirsten rat sarcoma viral oncogene homolog (KRAS) is related to better efficacy of therapeutic treatment. By contrast, the resistance of anti-EGFR therapy in CRC was driven by low EREG expression, aberrant genetic mutation and signal pathway alterations. Additionally, EREG overexpression in non-small cell lung cancer (NSCLC) is anticipated to be a therapeutic target for EGFR-tyrosine kinase inhibitor (EGFR-TKI). However, recent findings indicate that EREG derived from macrophages promotes NSCLC cell resistance to EGFR-TKI treatment. The emerging events of EREG-mediated tumor promotion signals are generated by autocrine and paracrine loops that arise from tumor epithelial cells, fibroblasts, and macrophages in the tumor microenvironment (TME). The TME is a crucial element for the development of various cancer types and drug resistance. The regulation of EREG/EGFR pathways depends on distinct oncogenic driver mutations and cell contexts that allows specific pharmacological targeting alone or combinational treatment for tailored therapy. Novel strategies targeting EREG/EGFR, tumor-associated macrophages, and alternative activation oncoproteins are under development or undergoing clinical trials. In this review, we summarize the clinical outcomes of EREG expression and the interaction of this ligand in the TME. The EREG/EGFR pathway may be a potential target and may be combined with other driver mutation targets to combat specific cancers.  相似文献   

14.
Lung cancer causes many deaths globally. Mutations in regulatory genes, irregularities in specific signal transduction events, or alterations of signalling pathways are observed in cases of non-small cell lung cancer (NSCLC). Over the past two decades, a few kinases have been identified, validated, and studied as biomarkers for NSCLC. Among them, EGFR, ALK, ROS1, MET, RET, NTRK, and BRAF are regarded as targetable biomarkers to cure and/or control the disease. In recent years, the US Food and Drug Administration (FDA) approved more than 15 kinase inhibitors targeting these NSCLC biomarkers. The kinase inhibitors significantly improved the progression-free survival (PFS) of NSCLC patients. Challenges still remain for metastatic diseases and advanced NSCLC cases. New discoveries of potent kinase inhibitors and rapid development of modern medical technologies will help to control NSCLC cases. This article provides an overview of the discoveries of various types of kinase inhibitors against NSCLC, along with medicinal chemistry aspects and related developments in next-generation kinase inhibitors that have been reported in recent years.  相似文献   

15.
Non-small-cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation eventually develop resistance to EGFR-targeted tyrosine kinase inhibitors (TKIs). Treatment resistance remains the primary obstacle to the successful treatment of NSCLC. Although drug resistance mechanisms have been studied extensively in NSCLC, the regulation of these mechanisms has not been completely understood. Recently, increasing numbers of microRNAs (miRNAs) are implicated in EGFR-TKI resistance, indicating that miRNAs may serve as novel targets and may hold promise as predictive biomarkers for anti-EGFR therapy. MicroRNA-506 (miR-506) has been identified as a tumor suppressor in many cancers, including lung cancer; however, the role of miR-506 in lung cancer chemoresistance has not yet been addressed. Here we report that miR-506-3p expression was markedly reduced in erlotinib-resistant (ER) cells. We identified Sonic Hedgehog (SHH) as a novel target of miR-506-3p, aberrantly activated in ER cells. The ectopic overexpression of miR-506-3p in ER cells downregulates SHH signaling, increases E-cadherin expression, and inhibits the expression of vimentin, thus counteracting the epithelial–mesenchymal transition (EMT)-mediated chemoresistance. Our results advanced our understanding of the molecular mechanisms underlying EGFR-TKI resistance and indicated that the miR-506/SHH axis might represent a novel therapeutic target for future EGFR mutated lung cancer treatment.  相似文献   

16.
Lung adenocarcinoma has a strong propensity to metastasize to the brain. The brain metastases are difficult to treat and can cause significant morbidity and mortality. Identifying patients with increased risk of developing brain metastasis can assist medical decision-making, facilitating a closer surveillance or justifying a preventive treatment. We analyzed 27 lung adenocarcinoma patients who received a primary lung tumor resection and developed metastases within 5 years after the surgery. Among these patients, 16 developed brain metastases and 11 developed non-brain metastases only. We performed targeted DNA sequencing, RNA sequencing and immunohistochemistry to characterize the difference between the primary tumors. We also compared our findings to the published data of brain-tropic and non-brain-tropic lung adenocarcinoma cell lines. The results demonstrated that the targeted tumor DNA sequencing did not reveal a significant difference between the groups, but the RNA sequencing identified 390 differentially expressed genes. A gene expression signature including CDKN2A could identify 100% of brain-metastasizing tumors with a 91% specificity. However, when compared to the differentially expressed genes between brain-tropic and non-brain-tropic lung cancer cell lines, a different set of genes was shared between the patient data and the cell line data, which include many genes implicated in the cancer-glia/neuron interaction. Our findings indicate that it is possible to identify lung adenocarcinoma patients at the highest risk for brain metastasis by analyzing the primary tumor. Further investigation is required to elucidate the mechanism behind these associations and to identify potential treatment targets.  相似文献   

17.
Patients with Hirschsprung disease (HSCR) do not always receive a genetic diagnosis after routine screening in clinical practice. One of the reasons for this could be that the causal mutation is not present in the cell types that are usually tested—whole blood, dermal fibroblasts or saliva—but is only in the affected tissue. Such mutations are called somatic, and can occur in a given cell at any stage of development after conception. They will then be present in all subsequent daughter cells. Here, we investigated the presence of somatic mutations in HSCR patients. For this, whole-exome sequencing and copy number analysis were performed in DNA isolated from purified enteric neural crest cells (ENCCs) and blood or fibroblasts of the same patient. Variants identified were subsequently validated by Sanger sequencing. Several somatic variants were identified in all patients, but causative mutations for HSCR were not specifically identified in the ENCCs of these patients. Larger copy number variants were also not found to be specific to ENCCs. Therefore, we believe that somatic mutations are unlikely to be identified, if causative for HSCR. Here, we postulate various modes of development following the occurrence of a somatic mutation, to describe the challenges in detecting such mutations, and hypothesize how somatic mutations may contribute to ‘missing heritability’ in developmental defects.  相似文献   

18.
目的探讨肺癌骨转移患者骨显像的特点及规律。方法对147例肺癌患者静脉注射99mTc-MDP,3~4h后行全身骨显像。结果147例肺癌患者中骨转移阳性者73例,阳性率为49.7%。其中肺腺癌的阳性率为62.9%,肺鳞癌的阳性率为38.9%,两者骨转移阳性率之间有显著统计学差异(P<0.01)。骨转移的部位以胸部为多见,其次为脊柱、骨盆、肢体和颅骨。结论核素骨显像对于探查肺癌骨转移瘤有很高的灵敏度,肺腺癌较鳞癌易发生骨转移,骨转移的部位以胸部为多见。  相似文献   

19.
Lung carcinoma is still the most common malignancy worldwide. One of the major subtypes of non-small cell lung cancer (NSCLC) is adenocarcinoma (AC). As driver mutations and hence therapies differ in AC subtypes, we theorized that the expression and function of ABC drug transporters important in multidrug resistance (MDR) would correlate with characteristic driver mutations KRAS or EGFR. Cisplatin resistance (CR) was generated in A549 (KRAS) and PC9 (EGFR) cell lines and gene expression was tested. In three-dimensional (3D) multicellular aggregate cultures, both ABCB1 and ABCG2 transporters, as well as the WNT microenvironment, were investigated. ABCB1 and ABCG2 gene expression levels were different in primary AC samples and correlated with specific driver mutations. The drug transporter expression pattern of parental A549 and PC9, as well as A549-CR and PC9-CR, cell lines differed. Increased mRNA levels of ABCB1 and ABCG2 were detected in A549-CR cells, compared to parental A549, while the trend observed in the case of PC9 cells was different. Dominant alterations were observed in LEF1, RHOU and DACT1 genes of the WNT signalling pathway in a mutation-dependent manner. The study confirmed that, in lung AC-s, KRAS and EGFR driver mutations differentially affect both drug transporter expression and the cisplatin-induced WNT signalling microenvironment.  相似文献   

20.
Neuroblastoma is a common extracranial solid tumour of childhood, responsible for 15% of cancer-related deaths in children. Prognoses vary from spontaneous remission to aggressive disease with extensive metastases, where treatment is challenging. Tumours are thought to arise from sympathoadrenal progenitor cells, which derive from an embryonic cell population called neural crest cells that give rise to diverse cell types, such as facial bone and cartilage, pigmented cells, and neurons. Tumours are found associated with mature derivatives of neural crest, such as the adrenal medulla or paraspinal ganglia. Sympathoadrenal progenitor cells express anaplastic lymphoma kinase (ALK), which encodes a tyrosine kinase receptor that is the most frequently mutated gene in neuroblastoma. Activating mutations in the kinase domain are common in both sporadic and familial cases. The oncogenic role of ALK has been extensively studied, but little is known about its physiological role. Recent studies have implicated ALK in neural crest migration and sympathetic neurogenesis. However, very few downstream targets of ALK have been identified. Here, we describe pathological activation of ALK in the neural crest, which promotes proliferation and migration, while preventing differentiation, thus inducing the onset of neuroblastoma. Understanding the effects of ALK activity on neural crest cells will help find new targets for neuroblastoma treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号