首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Performing time‐tagged, time‐correlated, single‐photon‐counting studies on individual colloidal nanocrystal quantum dots (NQDs), the evolution of photoluminescence (PL) intensity‐fluctuation behaviors in near‐infrared (NIR) emitting type II, InP/CdS core‐shell NQDs is investigated as a function of shell thickness. It is observed that Auger recombination and hot‐carrier trapping compete in defining the PL intensity‐fluctuation behavior for NQDs with thin shells, whereas the role of hot‐carrier trapping dominates for NQDs with thick shells. These studies further reveal the distinct ramifications of altering either the excitation fluence or repetition rate. Specifically, an increase in laser pump fluence results in the creation of additional hot‐carrier traps. Alternately, higher repetition rates cause a saturation in hot‐carrier traps, thus activating Auger‐related PL fluctuations. Furthermore, it is shown that Auger recombination of negatively charged excitons is suppressed more strongly than that of positively charged excitons because of the asymmetry in the electron‐hole confinement in type II NQDs. Thus, this study provides new understanding of how both NQD structure (shell thickness and carrier‐separation characteristics) and excitation conditions can be used to tune the PL stability, with important implications for room‐temperature single‐photon generation. Specifically, the first non‐blinking NQD capable of single‐photon emission in the near‐infrared spectral regime is described.  相似文献   

2.
Carrier multiplication (CM) is the amplification of the excited carrier density by two times or more when the incident photon energy is larger than twice the bandgap of semiconductors. A practical approach to demonstrate the CM involves the direct measurement of photocurrent in the device. Specifically, photocurrent measurement in quantum dots (QDs) is typically limited by high contact resistance and long carrier-transfer length, which yields a low CM conversion efficiency and high CM threshold energy. Here, the local photocurrent is measured to evaluate the CM quantum efficiency from a QD-attached Au tip of a conductive atomic force microscope (CAFM) system. The photocurrent is efficiently measured between the PbS QDs anchored on a Au tip and a graphene layer on a SiO2/Si substrate as a counter electrode, yielding an extremely short channel length that reduces the contact resistance. The quantum efficiency extracted from the local photocurrent data with an incident photon energy exhibits a step-like behavior. More importantly, the CM threshold energy is as low as twice the bandgap, which is the lowest threshold energy of optically observed QDs to date. This enables the CAFM-based photocurrent technique to directly evaluate the CM conversion efficiency in low-dimensional materials.  相似文献   

3.
Multiple exciton generation (MEG) is a process whereby multiple electron-hole pairs, or excitons, are produced upon absorption of a single photon in semiconductor nanocrystals (NCs) and represents a promising route to increased solar conversion efficiencies in single-junction photovoltaic cells. We report for the first time MEG yields in colloidal Si NCs using ultrafast transient absorption spectroscopy. We find the threshold photon energy for MEG in 9.5 nm diameter Si NCs (effective band gap identical with Eg = 1.20 eV) to be 2.4 +/- 0.1Eg and find an exciton-production quantum yield of 2.6 +/- 0.2 excitons per absorbed photon at 3.4Eg. While MEG has been previously reported in direct-gap semiconductor NCs of PbSe, PbS, PbTe, CdSe, and InAs, this represents the first report of MEG within indirect-gap semiconductor NCs. Furthermore, MEG is found in relatively large Si NCs (diameter equal to about twice the Bohr radius) such that the confinement energy is not large enough to produce a large blue-shift of the band gap (only 80 meV), but the Coulomb interaction is sufficiently enhanced to produce efficient MEG. Our findings are of particular importance because Si dominates the photovoltaic solar cell industry, presents no problems regarding abundance and accessibility within the Earth's crust, and poses no significant environmental problems regarding toxicity.  相似文献   

4.
We report in this paper our studies on the photoconductivity and photovoltaic effects of colloidal PbSe nanocrystal quantum dots (NQDs) which were embedded in conductive polymer matrices to form hybrid polymer/NQD infrared photodiodes. The generation of photocarriers in PbSe NQDs and their transport in NQD-polymer composites were described by a simplified band diagram picture of the device. Both photocurrent and photovoltage outputs were measured from the NQD-incorporated photodiode upon the illumination of near-infrared (NIR) light, whereas the net polymer-based devices do not exhibit any photoresponsivity. The intensity dependence of the photocurrent indicates the pseudomonomolecular recombination kinetics in the NQD-polymer composite. The measured photocurrent spectrum is consistent with the absorption characteristic of PbSe NQDs. Further enhancement of the photodiode efficiency can be achieved by engineering the nanocrystal surface to reduce the potential barriers due to the ligant capping molecules.  相似文献   

5.
We report ultra-efficient multiple exciton generation (MEG) for single photon absorption in colloidal PbSe and PbS quantum dots (QDs). We employ transient absorption spectroscopy and present measurement data acquired for both intraband as well as interband probe energies. Quantum yields of 300% indicate the creation, on average, of three excitons per absorbed photon for PbSe QDs at photon energies that are four times the QD energy gap. Results indicate that the threshold photon energy for MEG in QDs is twice the lowest exciton absorption energy. We find that the biexciton effect, which shifts the transition energy for absorption of a second photon, influences the early time transient absorption data and may contribute to a modulation observed when probing near the lowest interband transition. We present experimental and theoretical values of the size-dependent interband transition energies for PbSe QDs. We present experimental and theoretical values of the size-dependent interband transition energies for PbSe QDs, and we also introduce a new model for MEG based on the coherent superposition of multiple excitonic states.  相似文献   

6.
The performance of photovoltaic and photochemical devices is directly linked to the efficiency with which absorbed photons are converted into electron-hole pairs (excitons). A usual assumption is that one photon produces a single exciton, while the photon energy in the excess of the material's energy gap (the gap that separates the conduction from the valence band) is wasted as heat. Here we experimentally demonstrate that using semiconductor nanocrystals we can reduce this energy loss to a nearly absolute minimum allowed by energy conservation by producing multiple excitons per single photon. Specifically, we generate seven excitons from a photon with an energy of 7.8 energy gaps, which corresponds to only approximately 10% energy loss, while in the normal scenario (one photon produces one exciton) approximately 90% of the photon energy would be dissipated as heat. Such large yields of charge carriers (photon-to-exciton conversion efficiency up to 700%) has the potential to dramatically increase the performance of photovoltaic cells and can greatly advance solar fuel producing technologies.  相似文献   

7.
Nair G  Chang LY  Geyer SM  Bawendi MG 《Nano letters》2011,11(5):2145-2151
This article presents a perspective on the experimental and theoretical work to date on the efficiency of carrier multiplication (CM) in colloidal semiconductor nanocrystals (NCs). Early reports on CM in NCs suggested large CM efficiency enhancements. However, recent experiments have shown that CM in nanocrystalline samples is not significantly stronger, and often is weaker, than in the parent bulk when compared on an absolute photon energy basis. This finding is supported by theoretical consideration of the CM process and the competing intraband relaxation. We discuss the experimental artifacts that may have led to the apparently strong CM estimated in early reports. The finding of bulklike CM in NCs suggests that the main promise of quantum confinement is to boost the photovoltage at which carriers can be extracted. With this in mind, we discuss research directions that may result in effective use of CM in a solar cell.  相似文献   

8.
Step-like enhancement of luminescence quantum yield of silicon nanocrystals   总被引:1,自引:0,他引:1  
Carrier multiplication by generation of two or more electron-hole pairs following the absorption of a single photon may lead to improved photovoltaic efficiencies and has been observed in nanocrystals made from a variety of semiconductors, including silicon. However, with few exceptions, these reports have been based on indirect ultrafast techniques. Here, we present evidence of carrier multiplication in closely spaced silicon nanocrystals contained in a silicon dioxide matrix by measuring enhanced photoluminescence quantum yield. As the photon energy increases, the quantum yield is expected to remain constant, or to decrease as a result of new trapping and recombination channels being activated. Instead, we observe a step-like increase in quantum yield for larger photon energies that is characteristic of carrier multiplication. Modelling suggests that carrier multiplication is occurring with high efficiency and close to the energy conservation limit.  相似文献   

9.
用椭偏光谱仪首次在光子能量为2.15.2eV的范围内,测量了不同热处理温度下Ba0.9Sr0.1TiO3(BST)薄膜的椭偏光谱.建立适当的拟合模型,并用Cauchy色散模型描述BST薄膜的光学性质,用最优化法获得了所有样品的光学常数(折射率n和消光系数k)谱及禁带能Eg.比较这些结果,初步得到了BST薄膜的折射率n、消光系数k和禁带能Eg随退火温度变化的变化规律.  相似文献   

10.
Islam MA 《Nanotechnology》2008,19(25):255708
The nanocrystal quantum dot (NQD) charge states strongly influence their electrical transport properties in photovoltaic and electroluminescent devices, optical gains in NQD lasers, and the stability of the dots in thin films. We report a unique electrostatic nature of CdSe NQDs, studied by electrophoretic methods. When we submerged a pair of metal electrodes, in a parallel plate capacitor configuration, into a dilute solution of CdSe NQDs in hexane, and applied a DC voltage across the pair, thin films of CdSe NQDs were deposited on both the positive and the negative electrodes. Extensive characterizations including scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) and Raman studies revealed that the films on both the positive and the negative electrodes were identical in every respect, clearly indicating that: (1)?a fraction (<1%) of the CdSe NQDs in free form in hexane solution are charged and, more importantly, (2)?there are equal numbers of positive and negative CdSe NQDs in the hexane solution. Experiments also show that the number of deposited dots is at least an order of magnitude higher than the number of initially charged dots, indicating regeneration. We used simple thermodynamics to explain such amphoteric nature and the charging/regeneration of the CdSe NQDs.  相似文献   

11.
A new class of nanocrystal quantum dot (NQD), the "giant" NQD (g-NQD), was investigated for its potential to address outstanding issues associated with the use of NQDs as down-conversion phosphors in light-emitting devices, namely, insufficient chemical/photostability and extensive self-reabsorption when packed in high densities or in thick films. Here, we demonstrate that g-NQDs afford significantly enhanced operational stability compared to their conventional NQD counterparts and minimal self-reabsorption losses. The latter results from a characteristic large Stokes shift (>100 nm; >0.39 eV), which itself is a manifestation of the internal structure of these uniquely thick-shelled NQDs. In carefully prepared g-NQDs, light absorption occurs predominantly in the shell but emission occurs exclusively from the core. We directly compare for the first time the processes of shell→core energy relaxation and core→core energy transfer by evaluating CdS→CdSe down-conversion of blue→red light in g-NQDs and in a comparable mixed-NQD (CdSe and CdS) thin film, revealing that the internal energy relaxation process affords a more efficient and color-pure conversion of blue to red light compared to energy transfer. Lastly, we demonstrate the facile fabrication of white-light devices with correlated color temperature tuned from ~3200 to 5800 K.  相似文献   

12.
Semiconductor nanocrystal quantum dots (NQDs) are considered an attractive candidate for use in optoelectronic applications due to the ease of band gap control provided by varying the particle size. To increase the efficiency of NQDs when practically applied in devices, researchers have introduced the concept of coupling of NQDs to one-dimensional nanostructures such as single-walled carbon nanotubes (SWCNTs), which have a ballistic conducting channel. In the present study, NQDs of CdSe core and CdSe/ZnS are used as light absorbing building blocks. SWCNTs and functionalized NQDs are non-covalently coupled using pyridine molecules in order to maintain their electronic structures. To measure the electrical signals from the device, a NQDs-SWCNT hybrid nanostructure is fabricated as a field-effect transistor (FET) using the dielectrophoresis (DEP) method. A confocal scanning microscope was used to scan the devices using a diffraction-limited laser spot and the photocurrent was recorded as a function of the position of the laser spot. To improve the performance of detecting small electronic signal with high signal-to-noise ratio we used a lock-in technique with an intensity-modulated laser. In this paper, we have demonstrated that detection of local photoconductivity provides an efficient means to resolve electronic structure modulations along NQDs-SWCNT hybrid nanostructures.  相似文献   

13.
A fruitful paradigm in the development of low-cost and efficient photovoltaics is to dope or otherwise photosensitize wide band gap semiconductors in order to improve their light harvesting ability for light with sub-band-gap photon energies.(1-8) Here, we report significant photosensitization of TiO2 due to the direct injection by quantum tunneling of hot electrons produced in the decay of localized surface-plasmon polaritons excited in gold nanoparticles (AuNPs) embedded in the semiconductor (TiO2). Surface plasmon decay produces electron-hole pairs in the gold.(9-15) We propose that a significant fraction of these electrons tunnel into the semiconductor's conduction band resulting in a significant electron current in the TiO2 even when the device is illuminated with light with photon energies well below the semiconductor's band gap. Devices fabricated with (nonpercolating) multilayers of AuNPs in a TiO2 film produced over 1000-fold increase in photoconductance when illuminated at 600 nm over what TiO2 films devoid of AuNPs produced. The overall current resulting from illumination with visible light is ~50% of the device current measured with UV (?ω>Eg band gap) illumination. The above observations suggest that plasmonic nanostructures (which can be fabricated with absorption properties that cover the full solar spectrum) can function as a viable alternative to organic photosensitizers for photovoltaic and photodetection applications.  相似文献   

14.
刘昶时 《光电工程》2011,38(4):48-53
以建立在能量守恒定律得到的塔克(Tauc)关系为出发点,推算出一个三参数方程用来以光谱实验数据获得更加精确和可靠的材料的禁带宽度.禁带宽度Eg、材料性质指数n及取决于跃迁种类的常量A自然而然地以参数形式出现在这个参数方程中.于是当对实验数据进行最小二乘方非线性拟合后,就能得到表征材料特性的关键指标禁带宽度Eg、材料性质...  相似文献   

15.
Three outstanding effects of ionisation density on the thermoluminescence (TL) mechanisms giving rise to the glow peaks of LiF:Mg,Ti (TLD-100) are currently under investigation: (1) the dependence of the heavy charged particle (HCP) relative efficiency with increasing ionisation density and the effectiveness of its modelling by track structure theory (TST), (2) the behaviour of the TL efficiency, f(D), as a function of photon energy and dose. These studies are intended to promote the development of a firm theoretical basis for the evaluation of relative TL efficiencies to assist in their application in mixed radiation fields. And (3) the shape of composite peak 5 in the glow curve for various HCP types and energies and following high-dose electron irradiation, i.e. the ratio of the intensity of peak 5a to peak 5. Peak 5a is a low-temperature satellite of peak 5 arising from electron-hole capture in a spatially correlated trapping centre/luminescent centre (TC/LC) complex that has been suggested to possess a potential as a solid-state nanodosemeter due to the preferential electron/hole population of the TC/LC at high ionisation density. It is concluded that (1) the predictions of TST are very strongly dependent on the choice of photon energy used in the determination of f(D); (2) modified TST employing calculated values of f(D) at 2 keV is in agreement with 5-MeV alpha particle experimental results for composite peak 5 but underestimates the 1.5-MeV proton relative efficiencies. Both the proton and alpha particle relative TL efficiencies of the high-temperature TL (HTTL) peaks 7 and 8 are underestimated by an order of magnitude suggesting that the HTTL efficiencies are affected by other factors in addition to radial electron dose; (3) the dose-response supralinearity of peaks 7 and 8 change rapidly with photon energy: this behaviour is explained in the framework of the unified interaction model as due to a very strong dependence on photon energy of the relative intensity of localised recombination and (4) the increased width and decrease in T(max) of composite peak 5 as a function of ionisation density is due to the greater relative intensity of peak 5a (a low-temperature component of peak 5 arising from two-energy transfer events, which leads to localised recombination).  相似文献   

16.
We investigate the photodetachment of H near the band-gap metal surface based on the semiclassical closed orbit theory. The result shows that the staircase structure of the photodetachment cross section is strongly influenced by the lifetime of the detached electron near the metal surface as the photon energy increases. When the detached electron energy is between the threshold and the image potential, the photodetachment cross section presents some more sophisticated structure in each step.  相似文献   

17.
准分子激光刻蚀聚碳酸酯材料研究   总被引:6,自引:1,他引:5  
准分子激光刻蚀聚合物一般认为是由于聚合物材料吸收光子能量而升温,同时分子链上的 化学键也会因吸收光子能量而断裂。本文在讨论分析了准分子激光烧蚀聚合物机理的基础上,通过对不同能量密度情况下得到的不同烧蚀深度的实验结果进行分析计算,得出聚碳酸酯(PC)材料对波长248nm激光的吸收系数为4.17×104cm-1,能量阈值为49.8 mJ/cm2。  相似文献   

18.
We present the first published results of near-infrared single-photon detection in aluminium lumped element kinetic inductance detectors (LEKIDs). Using aluminium as a well-understood material that follows conventional superconductor theory, we discuss and validate a model that describes the energy-resolving performance of a LEKID to single-photon absorption events. We also discuss data analysis techniques used to extract single-photon detections from noisy data. We measure an energy resolution of 662 meV for a 1550 nm photon source which is in close agreement to our model predictions for this non-optimised device limited by generation–recombination noise.  相似文献   

19.
Electrically driven thermal light emission (TLE) from individual metallic single-walled carbon nanotubes (mCNTs) is theoretically investigated by detailed simulations and compared to a recent experiment (Mann et al., Nature Nanotech.., vol. 2, p. 33, 2007). The electrical and thermal properties are determined by carrier transport in the metallic subband, which has a zero dipole matrix element and does not experience radiative carrier recombination. The light emission, however, is contributed by the semiconducting subbands, which are populated by a thermal process. The simulation results indicate that due to diameter-dependent thermal effects, the maximum current of suspended mCNTs has a much stronger dependence on the CNT diameter than in non suspended CNTs. The size and shape of the light spot are sensitive to the measured photon energy range. Although the temperature profile along the CNT is approximately parabolic, the light emission profile has a much sharper peak at the middle of the CNT, which is in good agreement with the experiment and confirms the thermal nature of the light emission. The light emission spectrum at high energies is affected by the subband and energy dependences of the radiative recombination lifetime.  相似文献   

20.
We report the ultrafast light-induced absorbance change in CVD-grown multilayer graphene. Using femtosecond pump-probe measurements in 1100-1800 nm spectral range, we revealed broadband absorbance change when the probe photon energy was higher than that of the pump photon. The observed phenomenon is interpreted in terms of the Auger recombination and impact ionization playing a significant role in the dynamics of photoexcited carriers in graphene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号