首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
瓜尔豆胶对大豆分离蛋白乳浊液稳定性的影响   总被引:6,自引:0,他引:6  
研究了不同pH值条件下瓜尔豆胶对大豆分离蛋白乳浊液乳析稳定性和絮凝稳定性的影响。研究结果表明 ,在瓜尔豆胶浓度低于 0 0 4%时 ,随着瓜尔豆胶浓度的增加 ,乳浊液的稳定性逐渐增加。当多糖浓度高于 0 0 4%时 ,液滴发生排斥絮凝 ,体系的稳定性急剧下降 ,更高浓度的瓜尔豆胶因与乳浊液液滴间的热力学不相容性而导致体系发生各向同性和各向异性相分离。  相似文献   

2.
Fish oil emulsions varying in sodium caseinate concentration (25% w/w oil and 0.1–1.0% w/w protein, giving oil-to-protein ratios of 250–25) were investigated in terms of their creaming stability, rheological properties, the mobility of oil droplets and the oil/protein interaction at the interface. The presence of excessive protein in an emulsion (i.e., at 1% w/w) caused the aggregation of oil droplets through depletion flocculation, resulting in low creaming stability and high low-shear viscosity. At a lower protein concentration (0.1% w/w), when protein was limited, the emulsion droplets were stabilised by bridging flocculation and showed good stability to creaming. Shear-thinning behaviour was observed for both flocculated emulsions. A reduction in the low-shear viscosity and a Newtonian flow was obtained for the emulsion containing an intermediate concentration of protein (0.25% w/w). At this concentration, there was relatively little excess unadsorbed protein in the continuous phase; thus the emulsion was most stable to creaming. NMR was used to characterise these emulsion systems without dilution. Shorter T2 values (by low-field 1H NMR), for the emulsions containing both high (1% w/w) and low (0.1% w/w) amounts of protein, indicated increased restricted mobility of oils, caused by depletion or bridging flocculation. The line broadening in oil signals in the high-field NMR spectra (1H, 13C) indicated increased interaction between oil molecules and proteins at the interface with increasing protein concentration in emulsions. In addition, 31P NMR spectra, which reflect the mobility of the casein component only, showed increased line broadening, with reduction in protein content due to the relatively higher proportion of the protein being adsorbed to the interface of the oil droplets, compared to that in the continuous phase (i.e., as the oil-to-protein ratio was increased). The T2 values of resonances of the individual groups on oil molecules, obtained using high-field 1H NMR, reflected their different environments within the oil droplet.  相似文献   

3.
Aiqian Ye   《Food chemistry》2008,110(4):946-952
The interfacial composition and the stability of oil-in-water emulsion droplets (30% soya oil, pH 7.0) made with mixtures of sodium caseinate and whey protein concentrate (WPC) (1:1 by protein weight) at various total protein concentrations were examined. The average volume-surface diameter (d32) and the total surface protein concentration of emulsion droplets were similar to those of emulsions made with both sodium caseinate alone and WPC alone. Whey proteins were adsorbed in preference to caseins at low protein concentrations (<3%), whereas caseins were adsorbed in preference to whey proteins at high protein concentrations. The creaming stability of the emulsions decreased markedly as the total protein concentration of the system was increased above 2% (sodium caseinate >1%). This was attributed to depletion flocculation caused by the sodium caseinate in these emulsions. Whey proteins did not retard this instability in the emulsions made with mixtures of sodium caseinate and WPC.  相似文献   

4.
Studies have been made of the changes in droplet sizes, surface coverage and creaming stability of emulsions formed with 30% (w/w) soya oil, and aqueous solution containing 1 or 3% (w/w) sodium caseinate and varying concentrations of xanthan gum. Addition of xanthan prior to homogenization had no significant effect on average emulsion droplet size and surface protein concentration in all emulsions studied. However, addition of low levels of xanthan (≤0.2 wt%) caused flocculation of droplets that resulted in a large decrease in creaming stability and visual phase separation. At higher xanthan concentrations, the creaming stability improved, apparently due to the formation of network of flocculated droplets. It was found that emulsions formed with 3% sodium caseinate in the absence of xanthan showed extensive flocculation that resulted in very low creaming stability. The presence of xanthan in these emulsions increased the creaming stability, although the emulsion droplets were still flocculated. It appears that creaming stability of emulsions made with mixtures of sodium caseinate and xanthan was more closely related to the structure and rheology of the emulsion itself rather than to the rheology of the aqueous phase.  相似文献   

5.
This study focuses on the behaviour of liquid food emulsion systems in the stomach. Gastric digestion was studied in vitro using a stomach model consisting of a thermostatted titration vessel to which solutions of HCl, pepsin and a lipase were simultaneously added slowly. Four systems were studied: a whey protein-stabilised emulsion, a whey protein-stabilised emulsion with additional sodium caseinate, a Tween 80 stabilised emulsion, and homogenized full fat milk. It is shown that the in vitro colloidal behaviour of the systems under simulated gastric conditions is influenced significantly by their composition. The Tween 80 stabilised emulsion did not show instabilities, whereas the two protein-stabilised emulsions and full fat milk showed extensive flocculation, which for the protein-stabilized emulsions led to creaming and for full fat milk led to sedimentation. The experimental results also show some coalescence in the Tween 80 and milk systems. The formation of free fatty acids did not vary much between the systems, showing that flocculation and coalescence did not strongly affect lipolysis. The possible physiological relevance of these different behaviours are discussed, suggesting differences in stomach emptying rate and feelings of fullness and satiety.  相似文献   

6.
本文研究了甲基纤维素对大豆分离蛋白乳浊液稳定性的影响。研究结果表明,在低浓度时,甲基纤维素增加了体系的稳定性,对NaCl引起的液滴絮凝也有很好的抑制作用。而高浓度的甲基纤维素导致pH6.5和7.0的体系同时发生乳析和蛋白质沉积现象。其作用机理可能是,在低浓度时甲基纤维素吸附到液滴蛋白质层的外围形成次级保护层,增加了体系的稳定性,而高浓度时则可能置换出液滴的蛋白质吸附层。  相似文献   

7.
ABSTRACT Oil‐in‐water emulsions (20% n‐hexadecane, v/v) were stabilized by dodecyltrimethylammonium bromide (DTAB), Tween 20, or sodium dodecyl sulfate (SDS). Particle size distribution and creaming stability were measured before and after adding Escherichia coli cells to emulsions. Both E. coli strains promoted droplet flocculation, coalescence, and creaming in DTAB emulsions, although JM109 cells (surface charge = ‐35 mV) caused faster creaming than E21 cells (surface charge = ‐5 mV). Addition of bacterial cells to SDS emulsions promoted some flocculation and coalescence, but creaming stability was unaffected. Droplet aggregation and accelerated creaming were not observed in emulsions prepared with Tween 20. Surface charges of bacterial cells and emulsion droplets played a key role in emulsion stability.  相似文献   

8.
Emulsion instabilities such as depletion flocculation, coalescence, aggregation and heat-induced protein aggregation may be detrimental to the production of sterilised food emulsions. The type and the amount of protein present in the continuous phase and at the oil–water interface are crucial in the design of emulsions with appropriate stability. In this study, four oil-in-water model emulsion systems (pH 6.8–7.0) were formulated, characterised and categorised according to the potential interactions between protein-coated or surfactant-coated emulsion droplets and non-adsorbed proteins present in the continuous phase. The heat stability, the creaming behaviour and the flow behaviour of the model emulsions were influenced by both the emulsifier type and the type of protein in the continuous phase. The results suggest that this stability map approach of predicting droplet–droplet, droplet–protein and protein–protein interactions will be useful for the future design of heat-stable emulsion-based beverages with good creaming stability at high protein concentrations.  相似文献   

9.
In this study, different emulsifying ingredients were used to produce sub-micron emulsions for encapsulation purposes. Maltodextrin combined with a surface-active biopolymer (modified starch, or whey protein concentrate), or a small molecule surfactant (Tween 20) were used as the continuous phase, while d-limonene was the dispersed phase. Results showed that biopolymers are not efficient ingredients to produce very small emulsion droplets compared with small molecule surfactants because of their slow adsorption kinetics. The main problem with surfactants also is instability of the resulted emulsions due to “depletion and bridging flocculation” caused by free biopolymers and competition between surfactant and surface-active biopolymers. In general, it was not possible to produce a fairly stable microfluidized emulsion with surfactants for encapsulation purposes.  相似文献   

10.
《Food Hydrocolloids》2006,20(2-3):269-276
The heat stability of emulsions (4 wt% corn oil) formed with whey protein isolate (WPI) or extensively hydrolysed whey protein (WPH) products and containing xanthan gum or guar gum was examined after a retort treatment at 121 °C for 16 min. At neutral pH and low ionic strength, emulsions stabilized with both 0.5 and 4 wt% WPI (intact whey protein) were stable against retorting. The amount of β-lactoglobulin (β-lg) at the droplet surface increased during retorting, especially in the emulsion containing 4 wt% protein, whereas the amount of adsorbed α-lactalbumin (α-la) decreased markedly. Addition of xanthan gum or guar gum caused depletion flocculation of the emulsion droplets, but this flocculation did not lead to their aggregation during heating. In contrast, the droplet size of emulsions formed with WPH increased during heat treatment, indicating that coalescence had occurred. The coalescence during heating was enhanced considerably with increasing concentration of polysaccharide in the emulsions, up to 0.12% and 0.2% for xanthan gum and guar gum, respectively; whey peptides in the WPH emulsions formed weaker and looser, mobile interfacial structures than those formed with intact whey proteins. Consequently, the lack of electrostatic and steric repulsion resulted in the coalescence of flocculated droplets during retort treatment. At higher levels of xanthan gum or guar gum addition, the extent of coalescence decreased gradually, apparently because of the high viscosity of the aqueous phase.  相似文献   

11.
ABSTRACT: The influence of added unmodified amylopectin starch and modified amylopectin starch on the stability of oil-in-water emulsions (4 wt% corn oil), formed with a highly hydrolyzed commercial whey protein (WPH) product, during retort treatment (121°C for 16 min), was examined. The creaming, coalescence, and flocculation of the emulsions were studied by determining changes in the droplet size and the micro structure of the emulsions after retorting. At a low starch concentration (≤ 1.5%), the extent of coalescence was higher in the emulsions containing modified amylopectin starch than in those containing unmodified amylopectin starch. All emulsions containing moderate levels of unmodified or modified amylopectin starch showed flocculation of oil droplets by a depletion mechanism. The degree of flocculation, which was dependent on the molecular weight and the radius of gyration of the amylopectin molecules, was considered to correlate with the extent of coalescence of the oil droplets in these emulsions. At high levels of added starch (>1.5%), the degree of coalescence decreased gradually, apparently because of the high viscosity of the aqueous phase.  相似文献   

12.
Corn oil-in-water emulsions (20 wt%, d32~ 0.6 μm) stabilized by 2 wt% whey protein isolate were prepared with a range of pH (3–7) and salt concentrations (0–100 mM NaCl), and particle size, rheology and creaming were measured at 30°C. Appreciable droplet flocculation occurred near the isoelectric point of whey protein (pH 4–6), especially at higher NaCl concentrations. Droplet flocculation increased emulsion viscosity and decreased stability to creaming. Results are related to the influence of environmental conditions on electrostatic and other interactions between droplets.  相似文献   

13.
The creaming stability and viscosity of oil-in-water emulsions stabilized by whey protein isolate were monitored as functions of dextran sulfate (DS) and electrolyte (NaCl) concentration. At a specific DS concentration (the critical flocculation concentration, CFC), the droplets became flocculated, which promoted creaming. Addition of electrolyte caused an increase in CFC. At NaCl concentrations <0.5 wt%, addition of electrolyte decreased emulsion viscosity, but at concentrations >0.5 wt% it caused an increase in viscosity due to increased flocculation. The results were due to the influence of electrostatic screening on the effective volume of DS molecules and colloidal interactions between droplets.  相似文献   

14.
ABSTRACT:  Phase separation behavior of egg white-pectin/guar gum mixtures was investigated. These systems led to phase separation arisen by either depletion flocculation or thermodynamic incompatibility. The influence of polysaccharides on the emulsifying activity index (EAI), emulsifying stability index (ESI), creaming stability, microstructure, and rheological properties was also studied at different polysaccharide concentrations (0% to 0.5%, [w/v]). Increasing pectin and guar gum concentration from 0.01% to 0.5% significantly improved EAI by 51% and 25%, respectively. The highest ESI and EAI values were obtained in the presence of 0.5% (w/v) pectin/guar gum. Microscopic images showed that emulsions containing polysaccharides had small droplets as compared to that of emulsions without polysaccharides. The addition of polysaccharides improved emulsion stability against creaming. Egg white-stabilized emulsions with and without polysaccharides reflect the pseudoplastic behavior with  n  < 1.0. Polysaccharides, especially at high concentrations, affected the viscoelastic behavior of the emulsions; storage ( G ') and loss modulus ( G ") crossed-over at lower frequency values as compared to that of emulsions containing no polysaccharide.  相似文献   

15.
Properties of whey protein concentrate stabilised emulsions were modified by protein and emulsion heat treatment (60–90 °C). All liquid emulsions were flocculated and the particle sizes showed bimodal size distributions. The state and surface properties of proteins and coexisting protein/aggregates in the system strongly determined the stability of heat‐modified whey protein concentrate stabilised emulsions. The whey protein particles of 122–342 nm that formed on protein heating enhanced the stability of highly concentrated emulsions. These particles stabilised protein‐heated emulsions in the way that is typical for Pickering emulsions. The emulsions heated at 80 and 90 °C gelled due to the aggregation of the protein‐coated oil droplets.  相似文献   

16.
The influence of chitosan and gum arabic mixtures on the behaviour of o/w emulsions has been investigated at pH = 3.0. The emulsion behaviour, properties and microstructure were found to be greatly dependent on the precise gum arabic to chitosan ratio. Mixing of gum arabic with chitosan leads to the formation of coacervates of a size dependent on their ratio. Incorporation of low gum arabic to chitosan weight ratios into whey protein-coated emulsions causes depletion flocculation and gravity-induced phase separation. Increasing the polysaccharide weight ratio further, a droplet network with a rather high viscosity (at low shear stress) is generated, which prevents or even inhibits phase separation. At even higher gum arabic to chitosan ratios, the emulsion droplets were immobilised into clusters of an insoluble ternary matrix. Although the emulsion droplet charge had the same sign as that of the coacervates, clusters of oil droplets in a ternary matrix were generated. A mechanism to explain the behaviour of the whey protein-stabilised o/w emulsions is described on the basis of confocal and phase contrast microscopic observations, rheological data, zeta potential measurements, particle size analysis and visual assessment of the macroscopic phase separation events.  相似文献   

17.
The influence of the cationic amino polysaccharide chitosan content (0–0.5%) on particle size distribution, creaming stability, apparent viscosity, and microstructure of oil-in-water emulsions (40% of rapeseed oil) containing whey protein isolate (WPI) (4%) at pH 3 was investigated. The emulsifying properties, apparent viscosity and phase separation behaviour of aqueous WPI/chitosan mixture at pH 3 were also studied. The interface tension data showed that WPI/chitosan mixture had a slightly higher emulsifying activity than had whey protein alone. An increase in chitosan content resulted in a decreased average particle size, higher viscosity and increased creaming stability of emulsions. The microstructure analysis indicated that increasing concentration of chitosan resulted in the formation of a flocculated droplet network. This behaviour of acidic model emulsions containing WPI and chitosan was explained by a flocculation phenomenon.  相似文献   

18.
COLD GELATION OF WHEY PROTEIN EMULSIONS   总被引:4,自引:0,他引:4  
Stable and homogeneous emulsion‐filled gels were prepared by cold gelation of whey protein isolate (WPI) emulsions. A suspension of heat‐denatured WPI (soluble WPI aggregates) was mixed with a 40% (w/w) oil‐in‐water emulsion to obtain gels with varying concentrations of WPI aggregates and oil. For emulsions stabilized with native WPI, creaming was observed upon mixing of the emulsion with a suspension of WPI aggregates, likely as a result of depletion flocculation induced by the differences in size between the droplets and aggregates. For emulsions stabilized with soluble WPI aggregates, the obtained filled suspension was stable against creaming, and homogeneous emulsion‐filled gels with varying protein and oil concentrations were obtained. Large deformation properties of the emulsion‐filled cold‐set WPI gels were determined by uniaxial compression. With increasing oil concentration, the fracture stress increases slightly, whereas the fracture strain decreases slightly. Small deformation properties were determined by oscillatory rheology. The storage modulus after 16 h of acidification was taken as a measure of the gel stiffness. Experimental results were in good agreement with predictions according to van der Poel's theory for the effect of oil concentration on the stiffness of filled gels. Especially, the influence of the modulus of the matrix on the effect of the oil droplets was in good agreement with van der Poel's theory.  相似文献   

19.
ABSTRACT: Calcium chloride (0 to 10 mM) and potassium chloride (0 to 600 mM) were added into model nutritional beverage emulsions containing 7% (w/w) soybean oil droplets and 0.35% (w/w) whey protein isolate (pH 6.7). The particle size, surface charge, viscosity, and creaming stability of the emulsions then were measured. The surface charge decreased with increasing mineral ion concentration. The particle size, viscosity, and creaming instability of the emulsions increased appreciably above critical CaCl2 (3 mM) and KCl (200 mM) concentrations because of droplet flocculation. The origin of this effect was attributed to reduction of the electrostatic repulsion between droplets due to electrostatic screening and ion binding. CaCl2 promoted emulsion instability more efficiently than KCl because Ca2+ ions are more effective at reducing electrostatic repulsion than K+ ions.  相似文献   

20.
The effect of the addition of sucrose and xanthan gum, protein concentration, and processing method on the stability and destabilization mechanism type of emulsions formulated with two commercial whey protein concentrate powders was described and quantified following system changes with a Turbiscan TMA 2000, a light scattering equipment and a confocal laser scanning microscope. Two different processing methods that gave particle sizes with different orders of magnitude were compared: homogenization by ULTRA-TURRAX (UT) and by ultrasound (US). The addition of sucrose to the aqueous phase of emulsions significantly diminished volume-weighted mean diameter (D 4,3) and improved stability. When the aqueous phase contained xanthan gum, the main destabilization mechanism for UT emulsions changed from creaming to flocculation. For US emulsions, although some aggregation was detected by confocal laser scanning microscopy, it was not great enough to modify the backscattering average (BSav) in the middle zone of the tube (20–50 mm). At low protein concentrations, the profiles corresponded to destabilization of small aggregates. In those conditions, creaming was markedly enhanced as evident from creaming rate values. Independently of aqueous phase composition, US emulsions stabilized by protein concentrations higher than 5 wt% were stable, indicating that whey proteins were good emulsion stabilizers at pH close to 7. This study shows the relevance of protein type on stability and describes for the first time a behavior for whey proteins different from the one reported for caseins in literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号