首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为深入了解保定市空气质量状况,揭示PM2.5与臭氧(O3)的变化特征及相互关系,利用小波分析法对保定市2013—2020年每年4—9月AQI、PM2.5、O3-8 h (O3日最大8 h滑动平均值)和NO2浓度的逐日数据进行分析. 结果表明:①2013—2018年保定市O3污染呈逐年加重趋势,最大日浓度达到347 μg/m3;随着治理措施的颁布与实施,PM2.5超标天数由2013年的97 d减至2020年的1 d,PM2.5超标情况逐年改善. ②O3超标天数由2013年的3 d增至2018年的95 d,2020年减至61 d;O3超标天数占PM2.5和O3超标总天数的比例从2013年的3%增至2020年的98%,说明O3逐渐成为影响保定市空气质量的主要污染物. ③2013年保定市O3-8 h浓度低于“2+26”城市均值,2014—2020年O3-8 h浓度高于或接近“2+26”城市均值,说明近年来保定市O3-8 h浓度的升幅已超过“2+26”城市的平均水平. ④小波分析发现,2013—2020年(除2015年和2018年外)AQI与PM2.5污染序列的第1主周期相近,从2017年开始,AQI与O3-8 h污染序列的第1主周期和第2主周期均一致,说明近年来保定市空气污染逐渐由PM2.5污染转为PM2.5与O3复合污染. ⑤在同一时间尺度范围内,PM2.5与O3-8 h污染序列的震荡频率基本一致,说明二者存在较明显的正相关关系;2015—2019年,NO2与O3-8 h污染序列的震荡频率趋于一致,说明保定市O3-8 h浓度受前体物NO2影响较大,2020年震荡频率有较大差异,这可能与新冠肺炎疫情复工后生产规模尚未完全恢复,致使NO2、PM2.5等污染物排放强度同比降低有关. 因此,减少NO2排放,协同控制多污染物是实现保定市空气质量改善的主要途径.   相似文献   

2.
山东省PM2.5-O3复合污染特征突出,空间差异性明显,本文基于2016—2020年国控和省控环境空气自动监测站监测数据以及同期各气象代表站气象监测数据,分析PM2.5和O3时空分布的变化特征,初步探究其与气象因子及前体物的关系. 结果表明:①2016—2020年山东省空气质量逐步改善,优良天数比例上升了7.1%,重污染天数比例下降了3.5%. 除O3年评价值上升9.6%以外,SO2、PM10、PM2.5、CO和NO2的浓度均下降,降幅依次为61.3%、29.8%、28.6%、26.3%和11.4%. 各市PM2.5年评价值均下降(范围为18.4%~34.9%);除德州市外,其他15市O3年评价值均上升,滨州市的升幅(30.8%)最大. 1月PM2.5平均浓度最高,呈现先下降后上升的年变化趋势,6月O3平均浓度最高,且逐年上升. ②山东省PM2.5和O3均呈现内陆地区高于沿海地区的分布特征,PM2.5浓度在西部内陆地区较高,O3浓度在中北部内陆地区较高,PM2.5-O3复合污染特征在中西部地区较明显. 统计期间共计出现PM2.5-O3复合污染日224 d,分布在2—11月,出现天数逐年减少. ③为探究PM2.5-O3复合污染的影响因素及气象特征,进行相关性分析及气象因子阈值筛查,结果表明,PM2.5日均浓度和O3_8 h (臭氧日最大8小时滑动平均值)与其主要前体物和气象因子均呈现相反的相关关系,且对不同因子的响应有一定区域性差异. 当气温为14.9~24.1 ℃、相对湿度为55.5%~75.1%、风速为0.6~2.9 m/s、气压为992.8~1 018.8 hPa时PM2.5-O3复合污染易于发生,该条件下大部分城市的气温、相对湿度和气压平均值介于PM2.5和O3污染单独发生时的对应因子平均值,但平均风速小于PM2.5和O3污染单独发生的平均风速. 研究显示,“十三五”期间山东省PM2.5浓度波动下降,O3浓度波动上升,二者的协同关系日趋明显,气象因素对PM2.5和O3的生成和累积有一定影响.   相似文献   

3.
利用2019年9—10月广州市海珠湖大气成分观测站地表的气象要素和空气质量参数及垂直的颗粒物激光雷达观测资料,探讨不同PM2.5-O3污染类型对应的气象要素及大气污染物日变化特征、边界层内气溶胶分布特征,并对发生高PM2.5-高O3的成因进行分析.观测期间共出现25 d低PM2.5-低O3日(清洁日)、12 d低PM2.5-高O3日(污染日Ⅰ)和20 d高PM2.5-高O3日(污染日Ⅱ).对气象要素和污染物特征的分析表明,污染日Ⅱ在11:00—16:00的平均气温均超过30℃,相对湿度均低于60%,日均风速和最大J(NO2)分别为0.88 m·s-1和0.007 s-1.污染日Ⅱ与清洁日相比,其对应的气象要素表现为显著的高温低湿特征;与单一的O3污染日相比则表现为略低的光化辐射和较低...  相似文献   

4.
以往关于大气PM2.5-O3复合污染的研究主要集中在夏季,尚较缺乏对严峻的冬季复合污染问题的关注,为了解冬季大气PM2.5-O3复合污染过程,该文基于2015—2022年冬季(1—2月)空气质量地面监测、气象数据等资料,结合统计方法分析了我国华北地区冬季大气PM2.5-O3复合污染的特征及驱动因素. 结果表明:2015—2022年冬季,我国南方主要城市复合污染天数呈显著下降趋势(?0.8~?0.2 d/a),这与我国采取一系列措施降低了PM2.5浓度有关;但在我国北方地区,特别是华北地区冬季大气PM2.5-O3复合污染天数却呈现显著的上升趋势(0.2~0.7 d/a). 针对华北地区较为严峻的复合污染形势,挑选出19 d区域性的复合污染天进行重点分析. 在气象因素方面,复合污染发生时华北上空500 hPa高空存在反气旋环流异常、850 hPa高空存在偏南风异常,地面午后(10:00—18:00)平均温度(0.43~5.27 ℃)偏高、平均风速(?4.19~?0.22 m/s)偏小. 在化学过程方面,冬季华北地区发生复合污染的城市观测站点中PM2.5与O3浓度之间呈显著正相关(R=0.45,P<0.05),而在非复合污染的城市观测站点则表现为负相关(R=?0.68,P<0.05). 进一步对比华北地区复合污染城市观测站点与非复合污染城市观测站点Ox(Ox=NO2+O3)和NO2浓度的拟合斜率(分别为0.62、0.55)、PM2.5与CO浓度的比值(分别为0.07、0.06)以及Ox的浓度(平均值分别为124.40、113.47 μg/m3),定性地表明了华北地区冬季O3浓度的升高与活跃的光化学反应有关,同时较高的O3浓度也可能导致了更多的二次PM2.5生成. 研究显示,我国华北地区复合污染呈现加剧的态势且往往伴随着活跃的光化学反应,亟需进一步深入研究厘清复合污染发生时的大气化学过程.   相似文献   

5.
为了解京津冀及周边地区“2+26”城市PM2.5和O3复合污染时空分布特征,利用ArcGIS和SPSS软件对2015~2021年京津冀及周边地区“2+26”城市空气质量数据和气象数据进行关联性分析.结果表明:(1) 2015~2021年PM2.5污染持续减缓,污染集中在区域中南部;O3污染呈波动上升趋势,空间分布呈现“西南低,东北高”的格局.季节变化来看,PM2.5浓度主要为:冬季>春季≈秋季>夏季,O3-8h浓度为:夏季>春季>秋季>冬季.(2)“2+26”城市PM2.5超标天数持续下降,O3超标天数波动上升,复合污染日下降趋势显著;PM2.5和O3污染在夏季呈强正相关,相关系数最高达0.52,冬季呈强负相关.(3)对比典型城市臭氧污染时期与复合污染时期气象条件,复合污染发生的温度区间集中在23.7~26.5℃、湿度48%~65%和S~S...  相似文献   

6.
基于西安疫情管控期空气监测数据,分析PM2.5和O3的时空序列特征,从PM2.5源解析、O3前体物VOCs溯源、气象要素和区域传输方向探讨污染成因.结果表明:(1)管控期PM2.5和O3分别同比上升20.39%和23.72%,其他参数均下降;与管控前后时期相比,管控期PM2.5和PM10日均值协同变化趋势减弱,O3和NO2此消彼长趋势增强;相比去年同期,PM2.5小时值升高11~19μg·m-3,O3小时值夜间18:00~23:00升幅增大,为10~19μg·m-3.(2)污染物浓度变化呈现一定的空间聚集协同性;受地形及植被阻滞吸附影响,PM2.5污染集中在北部,由于城郊NO2滴定效果弱于城区,表现为南部郊区O3污染较...  相似文献   

7.
为了解河南省PM2.5-O3复合污染特征及气象成因,本文基于2014—2020年河南省18个地级市的空气质量国控点数据及常规地面气象观测数据,对河南省PM2.5-O3的复合污染时空特征及关键气象因子影响进行分析.结果表明:(1)在空间分布上,PM2.5-O3复合污染天数呈由河南省中北部向周围逐渐减少的特点,而O3单污染和PM2.5单污染高发区均主要集中于豫北地区.(2)在时间特征上,2014—2020年PM2.5-O3复合污染天数呈先增加后减少的特征,最多为12 d (2014年),2016—2017年未出现复合污染;PM2.5单污染和O3单污染天数均呈“M”型变化趋势,PM2.5单污染天数的2个峰值分别出现在2015年和2019年,分别为174和93 d,O3单污染天数的2个峰值分...  相似文献   

8.
近年来,我国面临着细颗粒物(PM2.5)污染形势依然严峻以及臭氧(O3)污染日益凸显的双重压力.为进一步准确预测郑州市大气PM2.5与O3浓度并探明气象因子的影响,本研究使用2018-2022年郑州市大气污染物和气象因子逐时数据,结合统计学单因素分析和机器学习LightGBM模型多因素分析,建立了一种基于长时间序列数据的PM2.5与O3浓度预测及气象因子影响分析的综合分析方法.结果表明:(1)训练后的LightGBM模型能够较好地预测PM2.5污染,准确率达80.8%;对O3污染预测的准确率为52.5%.(2)郑州市大气PM2.5浓度与气压呈正相关,与比湿和环境温度均呈负相关;大气O3 8 h滑动平均浓度(O3-8 h浓度)与比湿和太阳辐射均呈正相关,与气压呈负相关.(3)有利的气象条件可能是2021年PM2.5年均浓度得到显...  相似文献   

9.
为探究大气PM2.5和臭氧(O3)复合污染期间的污染物浓度削峰方案,以上海市2018年4月27—30日PM2.5和O3复合污染时段为研究对象,结合区域多尺度空气质量模型(CMAQ模型),建立上海市O3日最大8小时滑动平均值(MDA8 O3)以及PM2.5浓度与人为源排放的NOx和VOCs之间的响应关系,获得了EKMA (empirical kinetics modeling approach,经验动力学建模方法)曲线.在此基础上,探讨上海市MDA8 O3和PM2.5对前体物排放的敏感性,并进一步量化了本地减排、提前减排和区域减排等不同情景下PM2.5和MDA8 O3的浓度变化.结果表明:(1)上海市PM2.5和O3复合污染期间MDA8 O3的峰值率(PR)为0....  相似文献   

10.
利用2015~2019年环境监测数据,对比分析华北地区平原城市保定市和山区城市张家口市PM2.5和O3变化和相关关系.结果表明:保定市PM2.5夏低冬高,O3夏高冬低,日变化为午后单峰型,而张家口市PM2.5浓度低,日变化幅度较弱,冬季O3日变化为午后峰值和凌晨5:00左右弱峰值双峰型.张家口市冬季全天及春夏秋季夜间O3浓度显著高于保定市,甚至夏季出现夜间O3超标异常,最高浓度达到202μg/m3,反映了平原城市和清洁山区大气物理化学过程变化的影响.PM2.5和O3在4~9月为正相关,11~3月为负相关;保定市PM2.5-O3相关系数日变化呈单峰型,张家口市为双峰型变化,凌晨和午后各有一峰值,华北地区平原污染区和高山相对清洁区,大气复合污染物PM2.5和O3作用关系的日变化及季节特征具有明显差异.  相似文献   

11.
牛笑笑  钟艳梅  杨璐  易嘉慧  慕航  吴倩  洪松  何超 《环境科学》2023,44(4):1830-1840
基于2015~2020年中国333个城市PM2.5和O3浓度监测数据,利用空间聚类、趋势分析和地理重力模型等方法,定量分析我国主要城市的PM2.5-O3复合污染特征和时空演变格局.结果表明:(1) PM2.5和O3浓度存在协同变化规律,当ρ(PM2.5_mean)≤85μg·m-3时,ρ(PM2.5_mean)和ρ(O3_perc90)存在同步增长的现象;当ρ(PM2.5_mean)处于国家Ⅱ级限值(35±10)μg·m-3时,ρ(O3_perc90)平均值的峰值增速最快;当ρ(PM2.5_mean)>85μg·m-3时,ρ(O3_perc90)平均值出现显著下降趋势.(2)我国城市PM2.5和O3  相似文献   

12.
为研究鄱阳湖流域主要城市(南昌市、九江市和上饶市)PM2.5和O3污染对健康的影响,本文评估了“十四五”期间实现特定浓度目标可能带来的健康效益,分析了2015-2021年各污染物的浓度变化,并运用健康影响函数(HIF)及综合暴露-反应函数(IER)对这些城市的疾病负担进行了评估.结果表明:(1)2015-2021年,南昌市、九江市和上饶市的PM2.5年均浓度分别下降了28.57%、32.65%和34.88%,而O3浓度分别上升了11.53%、8.75%和7.06%;此外,PM2.5和O3浓度分布呈现出明显的季节性变化.鄱阳湖流域主要城市与PM2.5相关的疾病负担下降了18.42%,而与O3相关的疾病负担增加了81.11%.(2)预测显示,“十四五”期间若实现积极目标,南昌市、九江市和上饶市的PM2.5疾病负担将分别减少55.45%、59.51%和51.44%,在一般目标下将分别减少31.76...  相似文献   

13.
通过对2013—2020年邯郸市的大气污染物浓度及气象参数进行统计分析,探究了大气污染物的浓度变化特征,运用轨迹聚类分析和潜在源贡献因子法(PSCF)研究了邯郸市复合污染日PM2.5和O3的传输路径及潜在源区.结果表明:邯郸市PM2.5-O3复合污染出现在3—10月,与单O3污染相比,PM2.5-O3复合污染时的O3峰值浓度和平均浓度较高,当温度为19.1~25.7℃,湿度为32%~63%,风速较低时,最有利于PM2.5-O3复合污染发生;单O3污染和复合污染期间的O3主要来自邯郸周围的短距离传输,单PM2.5污染主要来自西北气流的长距离运输和邯郸周围的短距离传输,而复合污染日期间的PM2.5主要来自西北气流的长距离运输;相较于单O3污染,2013、2014、2...  相似文献   

14.
天津市PM10, PM2.5和PM1连续在线观测分析   总被引:9,自引:2,他引:7       下载免费PDF全文
利用2010年9月1日─11月30日在中国气象局天津大气边界层观测站采集的ρ(PM10),ρ(PM2.5)和ρ(PM1)数据,分析了观测期间可吸入颗粒物的统计特征,结合同期气象观测资料,分析了典型天气条件下ρ(PM10),ρ(PM2.5)和ρ(PM1)的日变化特征及与风速、风向的关系. 结果表明:观测期间,ρ(PM10)日均值有超过1/2的天数超过《国家环境空气质量标准》(GB 3095─1996)二级标准限值;ρ(PM2.5)有63 d超过美国国家环境保护局(US EPA)1997标准限值,超标率高达76.8%;不同天气条件下,ρ(PM10),ρ(PM2.5)和ρ(PM1)日变化特征明显,三者一般在大雾或扬沙/浮尘天气条件下出现高值,有降水过程时出现低值;可吸入颗粒物以粗粒子(PM2.5~10)和PM1为主,PM2.5~10,PM1~2.5和PM1主要分布在风速小于3 m/s,风向为225°~280°和70°~110°范围内;风速大于3 m/s时,ρ(PM2.5~10)和ρ(PM1~2.5)有所增加. ρ(PM10),ρ(PM2.5)和ρ(PM1)未出现周末效应,但存在明显的周内变化.   相似文献   

15.
姚青  丁净  杨旭  蔡子颖  韩素芹 《环境科学》2024,45(5):2487-2496
京津冀区域大气污染分布呈现明显的空间差异,厘清不同时间尺度下PM2.5和O3浓度分布有助于制定科学有效的污染防控措施.采用STL方法分解PM2.5和O3浓度,获取长期分量、季节分量和短期分量,研究其变化趋势与空间分布特征.结果表明,2017~2021年京津冀区域PM2.5浓度下降幅度高于O3,春、夏季PM2.5和O3浓度呈正相关,秋、冬季呈现负相关,短期分量和季节分量分别对PM2.5和O3浓度的贡献最大. PM2.5的季节分量、短期分量以及O3的长期分量和短期分量均存在2个主成分,对应河北省中南部和京津冀区域北部,在不同时间尺度上京津冀区域PM2.5和O3均存在次区域分布.与原始序列相比,长期分量能够更好地反映PM2.5和O3浓度的演变趋势...  相似文献   

16.
利用2015—2022年九江市国控站点O3和PM2.5逐时浓度数据,研究城区与庐山O3和PM2.5的浓度变化和差异特征.结果表明,山区年均O3浓度显著高于城区(平均偏高41.06μg·m-3),城区年均PM2.5浓度普遍高于山区(平均偏高20.99μg·m-3).2015—2022年城区与山区O3浓度呈波动上升趋势,而PM2.5浓度呈下降趋势,?O3与?PM2.5总体均呈下降趋势.从月变化看,城区与山区O3浓度均呈典型的“双峰”型变化趋势,而?O3呈“单峰”型月变化趋势;城区PM2.5浓度和?PM2.5均呈现出“U”型变化趋势,而山区PM2.5浓度月变化趋势不明显.在季节上,?O3最高值出现在春季...  相似文献   

17.
为揭示湖北省PM2.5和臭氧(O3)复合污染演变特征,基于湖北省17个地市的空气质量国控点和武汉市大气超级站组分监测数据,全面分析湖北省17个地市2015—2020年PM2.5和O3的时空变化特征及相关关系,探讨PM2.5和O3协同效应的成因机理. 结果表明:①2015—2020年,湖北省PM2.5显著改善,平均降幅为4.7 μg/(m3·a),但冬季负荷仍较高,主要集中于中部地区;O3污染凸显,平均增幅为3.8 μg/(m3·a),污染集中在4—10月的暖季,东部地区最严重,近两年超标天数已与PM2.5相当. ②湖北省PM2.5和O3关联日趋密切,协同效应显著,日评价指标显示夏季二者呈显著正相关(相关系数为0.57),近两年当PM2.5浓度≤50 μg/m3时,相关系数高达0.63;冬季PM2.5浓度与Ox(O3+NO2)浓度呈正相关,尤其2020年东部城市二者相关性高达0.46,显示大气氧化性对PM2.5二次污染的重要性. ③以武汉市为例,归纳PM2.5和O3复合污染的成因,暖季低PM2.5背景下,高温、中等湿度和弱风速的气象条件以及VOCs和NOx等前体物的高浓度排放,使得受VOCs主控的光化学反应加剧,易造成O3污染,从而加强PM2.5二次生成;冬季高的大气氧化性,叠加不利气象条件,促进颗粒物的二次生成,导致重污染时PM2.5组分以硝酸盐等二次无机组分为主. 研究显示,湖北省PM2.5和O3协同控制重点为,在保持现有NOx控制力度基础上强化VOCs控制,遏制暖季和东部区域O3浓度上升,加强冬季和中部PM2.5治理.   相似文献   

18.
为了解《打赢蓝天保卫战三年行动计划》期间(2018—2020年)以及之后(2021年)我国重点污染区域空气质量情况,并区分排放源控制与气象条件的贡献,本文利用逐小时监测的PM2.5、O3浓度以及气象要素数据,研究了2018—2021年京津冀及周边地区“2+26”城市PM2.5与O3污染特征,结合KZ (Kolmogorove Zurbenko)滤波方法定量分析了排放源与气象条件对PM2.5与O3浓度长期趋势的贡献. 结果表明:①2018—2021年“2+26”城市PM2.5浓度年均值与O3-8 h-90th浓度(O3日最大8 h平均浓度的第90百分位数)均呈逐年下降趋势. 2018—2021年PM2.5浓度年均值分别为60、57、51和45 μg/m3,河北省南部、河南省与山东省南部PM2.5浓度年均值均较高;O3-8 h-90th浓度分别为198、195、179和171 μg/m3,2018年保定市、石家庄市、聊城市与晋城市的O3-8 h-90th浓度(>210 μg/m3)均较高,而2021年太原市O3-8 h-90th浓度(192 μg/m3)较高. ②PM2.5与O3-8 h浓度(O3日最大8 h平均浓度)的长期分量在大部分城市受气象条件影响较为明显. 受气象条件影响的PM2.5浓度长期分量在2018—2020年无明显趋势,在2021年呈下降趋势;受排放源影响的PM2.5浓度长期分量在2018—2020年呈下降趋势,在2021年无明显趋势. 受气象条件影响的O3-8 h浓度长期分量在2018—2020年呈下降趋势,在2021年呈上升趋势;受排放源影响的O3-8 h浓度长期分量在2018年呈下降趋势,在2019—2021年无明显趋势. ③11个气象因子中,温度和相对湿度对PM2.5与O3-8 h浓度变化的影响较大,当温度与相对湿度均比前一天升高时,更有利于PM2.5与O3-8 h浓度的同时升高. 研究显示,“2+26”城市PM2.5与O3污染受气象条件影响显著,温度与相对湿度的变化对判定PM2.5与O3-8 h浓度同时升高的现象有一定积极意义.   相似文献   

19.
利用成都市2014~2016年逐日呼吸系统疾病和心脑血管疾病死亡资料、同期气象资料和PM2.5日均浓度和每日臭氧最大8h平均浓度(O3)资料,采用分布滞后模型以及广义相加模型中的独立效应模型、非参数二元响应模型和温度分层模型探究了成都市气温、PM2.5和O3单效应,以及气温与PM2.5(或O3)交互作用对当地呼吸和心脑血管疾病死亡人数的影响.单效应分析结果表明,气温与两种疾病死亡人数的累计暴露-反应关系均呈反“J”型分布,最适温度在22.2℃,该温度对应的疾病死亡人数最少;累积滞后1d的PM2.5(或O3)对应的健康风险最大,此时,PM2.5和O3浓度每升高10μg/m3,呼吸系统疾病死亡风险分别增加0.58%和0.54%,心脑血管疾病死亡风险分别增加0.35%和0.66%.分季节研究结果表明,PM2.5对两种疾病死亡影响的健康风险冬季最高,而O3的健康风险在秋季最显著.交互作用的研究结果表明,高温与高浓度的PM2.5(或O3)对疾病死亡的影响存在协同放大效应,当气温高于22.2℃时,PM2.5和O3浓度每升高10μg/m3,对应的呼吸系统疾病死亡风险分别增加2.30%和1.14%,心脑血管疾病死亡风险分别增加1.09%和1.03%.研究结果提示O3对人群健康的影响也不容忽视,应该引起足够的重视.  相似文献   

20.
基于2015~2019年广州4个不同国控站点类型的大气污染物监测数据,研究了广州各站点类型颗粒物(PM2.5)和臭氧(O3)的污染特征,并分析了O3污染季节和PM2.5污染季节PM2.5和O3的相关性及相互作用.结果表明:2015~2019年广州各站点类型PM2.5浓度总体呈下降趋势,O3浓度呈上升趋势.不同污染季节PM2.5与O3浓度均呈正相关.O3污染季节二次PM2.5的生成对颗粒物的影响显著大于一次PM2.5,随着光化学水平的升高,一次PM2.5的贡献浓度基本不变(均在21.03~31.37μg/m3范围内),贡献率逐渐下降;而二次PM2.5的贡献浓度逐渐升高(3.51~7.72 μg/m3升高到16.04~18.45μg/m3),贡献率也逐渐升高(11%~27%升高到34%~44%),且呈倍数增加.不同站点类型贡献差异明显,背景站点二次PM2.5的贡献最大,城区站点在中和高光化学水平下二次PM2.5的贡献最小;PM2.5污染季节各站点类型在不同PM2.5污染水平下O3浓度均具有差异性,总体上均呈现背景站点>郊区站点>城区站点的特点.气溶胶的消光作用和非均相反应均显著促进O3生成,随着PM2.5浓度升高,各站点类型的O3浓度峰值逐渐升高,由62.12~83.82μg/m3升高到92.49~135.4μg/m3;O3变化率峰值也逐渐升高,由8.42~10.02μg/(m3·h)升高到21.33~27.04μg/(m3·h).进一步促进了广州PM2.5和O3浓度的协同增长.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号