首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
采用膨胀法并结合金相法和硬度法,利用Gleeble-1500D热模拟试验机测定QP980钢在不同冷却速度下过冷奥氏体连续冷却时的膨胀曲线,利用Origin软件绘制QP980钢过冷奥氏体连续冷却相转变(CCT)曲线,分析冷却速度对QP980钢组织和硬度的影响。结果表明:QP980钢过冷奥氏体的冷却速度小于1.5℃/s时,主要发生铁素体、珠光体和贝氏体的转变;随着冷却速度的增加,铁素体软相组织不断减少,贝氏体等硬相组织不断增加,硬度值增加显著;冷却速度在2℃/s~10℃/s范围内主要发生贝氏体和马氏体的转变,硬度值变化较显著;冷却速度大于10℃/s时只发生马氏体转变,硬度值变化趋于缓慢。  相似文献   

2.
采用Gleeble-3500热模拟试验机模拟了550 MPa级桥梁钢板热变形奥氏体的动态连续冷却转变过程,结合金相法绘制实验钢的CCT曲线,并对相变组织进行硬度和拉伸性能测试。结果表明,当冷却速度小于1℃/s时,钢的冷却组织为粒状贝氏体,其基体为铁素体;当冷速为5℃/s时,转变组织中开始出现少量板条贝氏体,为粒状贝氏体+板条贝氏体的混合组织,且粒状贝氏体岛状组织明显沿板条界面分布;随冷速继续增大,粒状贝氏体减少,板条贝氏体特征更加明显。随冷速的增大,组织细化,连续冷却转变组织硬度增加,强度升高。  相似文献   

3.
利用热膨胀法,结合金相法、硬度法测定了23Cr Ni3Mo钢过冷奥氏体的连续冷却转变(CCT)曲线;并分析了连续转变过程中钢的组织和硬度。结果表明:试验钢在冷却速度为0.1~0.3℃/s时,得到铁素体和贝氏体的混合组织;冷却速度为0.5~5℃/s时,得到综合性能优良的下贝氏体组织;冷却速度≥10℃/s时,得到主要为板条状马氏体的组织,在温度-时间对数曲线上出现了明显的由马氏体相变引起的"拐点"。随着冷却速率的增大,23Cr Ni3Mo钢的硬度逐渐增大,最终稳定在490 HV0.2左右。  相似文献   

4.
利用Gleeble3500热模拟试验机对船板用钢进行模拟试验,采集温度-膨胀量曲线,并结合金相法、硬度法绘制出试验材料的CCT曲线。分析CCT图和试验钢显微组织照片,得出不同冷却速度下该钢的组织转变情况。随着冷却速度的逐渐增大,试验钢的组织由多边形铁素体、准多边形铁素体逐步向粒状贝氏体、贝氏体铁素体的转变,同时显微硬度也随冷速的升高呈明显的上升趋势。  相似文献   

5.
在Gleeble-3800热模拟机上测定了含微量Mo元素CL60钢在不同冷却速度下连续冷却时的膨胀曲线,并采用金相-硬度法,测定了该钢的连续冷却转变曲线(CCT曲线),研究了冷却速度对其显微组织演变以及硬度的影响。结果表明:当冷却速度小于1℃/s时,实验钢的转变产物为先共析铁素体和珠光体组织;当冷却速度增加到2℃/s时,开始发生贝氏体转变;当冷却速度增加到5℃/s时,开始发生马氏体转变;冷却速度在5~10℃/s的范围内时,转变产物为少量铁素体、珠光体、贝氏体和马氏体所组成的混合组织;当冷却速度为15℃/s时,先共析铁素体消失;当冷却速度为20~40℃/s时,转变产物为珠光体和马氏体混合组织;当冷却速度大于50℃/s时,转变产物全部为马氏体组织。随着冷却速度的增大,实验钢的硬度逐渐增大。尽管Mo元素的加入能细化珠光体片间距,但加Mo元素CL60钢在生产过程中得到理想组织的条件更加苛刻。为避免贝氏体、马氏体等非理想组织出现,不同部位的冷却速度须严格控制在2℃/s以下。  相似文献   

6.
结合膨胀法和金相-硬度法,利用Gleeble-1500D热模拟机测定了42CrMoA钢的临界点Ac1、Ac3和Ms点,测定了该钢在不同冷却速度下连续冷却时的膨胀曲线,相转变点;分析了连续冷却过程中过冷奥氏体转变过程及转变产物的组织形貌;测定了不同冷却速度下相转变后的硬度,获得了该钢过冷奥氏体连续冷却相转变曲线.结果表明,当冷却速度小于0.1℃/s时,转变产物为铁素体和珠光体组织;当冷却速度0.2~0.6℃/s时转变产物是铁素体、珠光体、贝氏体的混合组织;当冷却速度为0.7~17℃/s时,转变产物是贝氏体和马氏体的混合组织;当冷却速度大于20℃/s时,转变产物为完全马氏体,此次实验并没有获得完全贝氏体.  相似文献   

7.
利用DIL805A型淬火变形膨胀仪对H13钢进行连续冷却转变试验。利用膨胀法结合金相-硬度法绘制H13钢的连续冷却转变(CCT)曲线。研究了冷速对试样组织和硬度的影响。比较分析980、1030℃两种奥氏体化温度所测CCT曲线的异同。结果表明:马氏体转变的临界冷速为1℃/s。随奥氏体化温度降低,Ms点升高,贝氏体转变区域减小,珠光体转变区域增大且向左偏移;随冷却速度增大和奥氏体化温度升高,试验钢硬度增大。  相似文献   

8.
在Gleeble-3800热模拟机上测定了20Cr1Mo1V钢以不同冷却速度连续冷却时的膨胀曲线,结合金相-硬度法获得了该钢的连续冷却转变曲线(动态CCT曲线)。根据测得的CCT曲线,分析以不同冷却速度连续转变时的组织转变;阐明冷却速度与组织的演变以及硬度变化的关系。结果表明:当冷却速度为10~25℃/s时,获得贝氏体;动态CCT曲线的测定为生产实践和新工艺的制定提供了参考。  相似文献   

9.
采用Formastor全自动相变仪进行了两段式冷却条件下C-Mn钢的热膨胀试验,并结合组织观察和显微硬度测量,研究了冷却速度以及发生部分先共析铁素体转变对奥氏体中温转变的影响。结果表明:随着冷却速度的增大和先共析铁素体含量的增加,贝氏体相变开始温度和结束温度均降低,贝氏体转变量减少;奥氏体随冷却速度的增大,转变产物由铁素体+珠光体逐渐变为魏氏组织铁素体+珠光体、网状铁素体+魏氏组织+贝氏体、马氏体的趋势;而对已发生部分先共析铁素体转变的过冷奥氏体,随先共析铁素体含量的减少,组织由魏氏组织+贝氏体向魏氏组织+马氏体转变。  相似文献   

10.
采用热模拟试验方法,测定了U75V钢轨连续冷却转变曲线和等温转变曲线,研究不同冷却速度及相变温度对组织转变及硬度的影响。通过研究冷却起始温度对钢轨性能的影响,确定了在线热处理生产开冷温度范围。结果表明:在连续冷却转变试验中,随冷却速度增大,硬度值逐渐增加,组织由珠光体逐渐向马氏体过渡,最佳冷却速度范围为1.5~4.0℃/s。在等温转变试验中,随相变温度降低,硬度逐渐升高,组织由珠光体逐渐向贝氏体过渡。不同开冷温度下显微组织均为珠光体加少量铁素体,开冷温度高于690℃时,试样硬度基本一致。建议在实际生产中,该钢种开冷温度控制在690℃以上,冷却速度控制在1.5~4.0℃/s,以保证组织及硬度满足标准要求。  相似文献   

11.
为进一步优化非调质NM400复相耐磨钢不同组织配比,利用Gleeble-3800热模拟试验机探究了试验钢在连续冷却条件下的组织转变规律,并结合金相法和硬度法,绘制出试验钢的动态连续冷却转变(CCT)曲线。结果表明,当冷速低于1 ℃/s时,试验钢组织为铁素体+粒状贝氏体+珠光体,部分粗大的原奥氏体晶粒转变为粒状贝氏体和珠光体。在冷却速率为5~40 ℃/s时,试验钢不再发生珠光体转变,显微组织均为铁素体+贝氏体+马氏体。并随着冷速的增加,马氏体含量不断增加,硬度升高;此外,不同分段冷却方案下,较低的中冷温度以及较长的空冷时间均有利于铁素体和贝氏体的转变。同时,残留奥氏体含量则随铁素体含量的增大而增大;由于试验钢的Ms点较高,马氏体板条较宽,并且有自回火现象发生。  相似文献   

12.
利用膨胀法结合金相-硬度法,在Gleeble-3800热模拟机上测定了27CrMo27S钢的临界点Ac1、Ac3以及Ms;测定了该钢在不同冷却速度下连续冷却时的膨胀曲线,获得了连续冷却转变曲线(CCT曲线);研究了冷却速度对该钢组织及硬度的影响。结果表明在相当低的冷却速度范围内可获得贝氏体组织。当冷却速度小于1℃/s,转变产物为铁素体、珠光体和贝氏体(F+P+B),当冷却速度为1~6℃/s时转变产物是铁素体和贝氏体(F+B),当冷却速度为8~24℃/s时转变产物是贝氏体和马氏体(B+M),当冷却速度大于24℃/s时,转变产物为完全马氏体(M)。该钢种动态CCT曲线的测定可为生产实践和新工艺的制定提供一定的参考依据。  相似文献   

13.
利用SEM、电子探针、纳米压痕及高温变形热模拟机,研究低碳合金钢在不同热处理工艺下组织及力学性能的变化规律。结果表明,冷却速度不同时,合金钢中贝氏体的显微组织不同。当冷却速率为0.50~1.00℃/s时,钢中组织为准多边形铁素体和粒状贝氏体;冷却速度为3.00~10.00℃/s时,组织变为针状铁素体和板条贝氏体。针状铁素体组织的相变温度为620~600℃之间;试验钢中准多边形铁素体硬度最低,板条贝氏体硬度最高,贝氏体组织的本征硬度与维氏硬度均随冷却速度的增加而增大,且基体本征硬度对合金钢维氏硬度的变化起主要作用。  相似文献   

14.
采用DIL805L热膨胀仪,研究了Si-Mn-Mo系贝氏体非调质钢奥氏体连续冷却转变过程(CCT曲线),分析其显微组织及硬度、强度的变化。结果表明,试验钢在小于7℃/s较宽冷速范围内均可获得贝氏体+铁素体组织,且贝氏体以粒状贝氏体+板条贝氏体2种形态存在。随着冷却速度增加,显微组织逐渐转变为以马氏体为主,同时晶粒细化作用增强,硬度及抗拉强度增加。可以通过对转变组织的控制,得到综合力学性能良好的贝氏体钢。  相似文献   

15.
27CrMo27S钢奥氏体连续冷却转变曲线   总被引:1,自引:0,他引:1  
利用膨胀法结合金相-硬度法,在Gleeble-3800热模拟机上测定了27CrMo27S钢的临界点Ac1、Ac3以及Ms;测定了该钢在不同冷却速度下连续冷却时的膨胀曲线,获得了连续冷却转变曲线(CCT曲线);研究了冷却速度对该钢组织及硬度的影响。结果表明在相当低的冷却速度范围内可获得贝氏体组织。当冷却速度小于1℃/s,转变产物为铁素体、珠光体和贝氏体(F+P+B),当冷却速度为1~6℃/s时转变产物是铁索体和贝氏体(F+B),当冷却速度为8-24℃/s时转变产物是贝氏体和马氏体(B+M),当冷却速度大于24℃/s时,转变产物为完全马氏体(M)。该钢种动态CCT曲线的测定可为生产实践和新工艺的制定提供一定的参考依据。  相似文献   

16.
采用膨胀法并结合金相-显微硬度法,在Gleeble-3500热模拟试验机上测定了弹簧钢50CrVA的相变临界点Ac1、Ac3、Ar1、Ar3;测定了该钢在不同冷却速度时的膨胀曲线,绘制了该钢的连续转变曲线(CCT曲线)。结果表明,随着冷却速度的增加,其显微硬度增加;当冷却速度小于5℃/s时,转变产物为多边形铁素体、珠光体和少量贝氏体的混合组织,当冷却速度在5~10℃/s之间时,转变产物为铁素体、珠光体和少量贝氏体;当冷却速度大于10℃/s,得到马氏体组织。  相似文献   

17.
在Gleeble-1500D热模拟试验机上测定DP980双相钢的连续冷却相转变曲线(CCT曲线),结合金相显微组织及维氏硬度,分析了不同冷却速度连续冷却时的组织转变,阐明了冷却速度与组织演变以及硬度变化的关系。结果表明:DP980钢在很大的冷速区间内都仅发生铁素体和贝氏体转变,只有当冷却速度达到50℃/s时,才开始发生马氏体转变。随冷速的提高,尤其在0.5~20℃/s时,硬相的贝氏体含量逐渐增加,硬度随冷速的提高增加的较为明显;冷却速率为20~50℃/s时,硬度提高趋于平缓。  相似文献   

18.
利用线膨胀法,结合金相显微分析和显微硬度测量,研究了冷却速度(1~2 000 ℃/min)对30CrNi3MoV超高强钢过冷奥氏体连续冷却转变的影响,测得了其CCT曲线.结果表明,该试验钢的CCT图中没有珠光体转变区.冷速在1~20 ℃/min范围,随冷速的增大,组织中依次出现粒状贝氏体、条状上贝氏体和针状下贝氏体;当冷速增大到超过25 ℃/min以后,组织全部为板条状和针状混合马氏体,一直到2 000 ℃/min,组织形态没有明显变化.  相似文献   

19.
设计了一种9MnCr低合金磨球用钢,绘制了9MnCr钢的连续冷却转变曲线,并对其组织和硬度进行了分析.结果表明,当冷却速度小于2℃/s时,转变产物为片层状珠光体和沿晶界分布的二次碳化物;当冷却速度为2~5℃/s时,转变产物为片层状珠光体、马氏体和少量贝氏体;当冷却速度大于5℃/s时,转变产物为马氏体组织.硬度随冷却速度的增加而增加,当冷却速度大于5℃/s时,基本保持不变,为61 HRC.220℃等温30 min后,转变产物基本为马氏体组织,随着等温温度的升高,逐渐出现贝氏体,硬度呈下降趋势;在420℃等温过程中,初期贝氏体的转变速率较快,但转变一段时间后,贝氏体的转变速率减慢.  相似文献   

20.
通过热模拟试验对高强船板钢EH47在连续冷却条件下的相变行为以及显微组织演变进行了研究。研究结果表明:冷却速度增加,可以加快高强船板钢EH47铁素体和贝氏体转变,抑制珠光体转变。随着冷却速度增加,铁素体含量减少,贝氏体含量增加,几乎不存在珠光体组织;同时随着冷却速度增加,显微组织变得越来越细小均匀,EH47钢硬度增加。通过对比研究高强船板钢EH47不同冷却速度下的硬度值可以发现,变形提高了加工硬化程度,在冷却速度相同的情况下,变形EH47钢的硬度较未变形EH47钢的硬度有所增加,但增加幅度不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号