首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
从盐湖卤水中萃取锂   总被引:8,自引:0,他引:8  
选取磷酸三丁酯(TBP)为萃取剂,200号溶剂汽油为稀释剂,氯化铁(FeCl3.6H2O)为共萃取剂,从青海盐湖含锂卤水中萃取锂,并对TBP质量分数对萃取率的影响,相比对萃取率及分配比的影响进行研究。研究结果表明:共萃剂FeCl3在萃取过程中作用明显,同时,水相氢离子浓度是非常重要的影响因素,适当的酸度既可以保证锂离子进入有机相,减少氢离子与有机溶剂络合的机会,又可以保证铁离子在溶液中不发生水解;最佳萃取工艺条件如下:TBP质量分数为60%,萃取相比(O/A)为1.5,n(Fe3 )/n(Li )为1.3,水相氢离子浓度为0.05 mol/L。在此条件下,锂的萃取率可达到80%,锂、镁分离效果较好,萃取液经洗涤、反萃取和深度除镁后,可制备高纯度碳酸锂。  相似文献   

2.
采用P507-Cyanex272混合萃取体系分离微生物浸出液中的镍钴,实验结果表明该体系具有较好的协萃效应.结合低含量镍钴的微生物浸出液体系高酸度、低钴镍比的特点,对比了P507、Cyanex272和P507-Cyanex272三种萃取体系对镍钴的萃取分离效果,确定了在初始pH值1.5~2.2、对应的平衡pH值4.00~5.25条件下P507-Cyanex272协萃体系有较好的镍钴分离效果.系统考察了室温28℃下协萃体系各影响因素对镍钴分离的影响,确定协同萃取的最佳工艺为:P507与Cyanex272摩尔比3︰2,皂化率60%,萃取剂体积分数10%,有机相(由萃取剂与煤油组成)和水相体积比1︰4.在此条件下钴的一级萃取率为99.16%,镍钴分离系数为932.59.  相似文献   

3.
针对现行的湿法炼锌渣中提取锗的研究现状,采用新型萃取剂HBL101从锌置换渣的高酸浸出液中直接萃取锗,考察了料液酸度、萃取剂体积分数、萃取温度、萃取时间和相比对萃取的影响以及氢氧化钠质量浓度、反萃温度、反萃时间和反萃相比对反萃的影响,并对萃取剂转型条件进行了研究.实验表明:有机相组成为30% HBL101+70%磺化煤油(体积分数)作为萃取剂,料液酸度为113.2 g·L-1 H2 SO4,其最佳萃取条件为萃取温度25℃,萃取时间20 min,相比O/A=1:4.经过五级逆流萃取,锗萃取率达到98.57%.负载有机相用150 g·L-1 NaOH溶液可选择性反萃锗得到高纯度锗酸钠溶液,其最佳反萃条件为反萃温度25℃,反萃时间25 min,相比O/A=4:1.经过五级逆流反萃,反萃率可达到98.1%.反萃锗后负载有机相再用200 g·L-1硫酸溶液反萃共萃的铜并转型,控制反萃温度25℃,反萃时间20 min,O/A=2:1.经过五级逆流反萃,铜反萃率可达到99.5%并完成转型,萃取剂返回使用.  相似文献   

4.
采用Lix973作萃取剂,硫酸作反萃剂,从氨性浸出液中萃取分离铜和钴。研究萃取剂体积分数、有机相与水相的体积比(相比)、混合时间、反萃剂质量浓度、反萃相比和反萃时间对萃取分离铜和钴的影响,确定获得Lix973萃取分离铜的优化条件。研究结果表明最佳萃取铜的条件为:室温下有机相与水相的体积比1:1,混合时间2 min,萃取剂Lix973体积分数5%。在此实验条件下,铜的一级萃取率达到99.29%;最佳反萃铜的条件为:室温下反萃相比2:3,反萃时间1 min,硫酸质量浓度160 g/L。在此实验条件下,铜的一级反萃率为96.13%。  相似文献   

5.
本文应用国产羟肟类萃取剂2-羟基-4-仲辛氧基二苯甲酮肟(代号N_(530))进行了萃取分离钴镍的研究。实验所用有机相为20%N_(530)磺化煤油溶液,水相分别为钴(Ⅱ)、镍(Ⅱ)氨性硫酸盐、氨性氯化物及氨性碳酸盐溶液,研究结果表明:钴(Ⅱ)镍(Ⅱ)的萃取率均随水相平衡pH值及铵盐浓度的升高而增大;温度的影响不显著,钴(Ⅱ)的萃取速率大于镍(Ⅱ)的萃取速率。N_(530)分离钴(Ⅱ)镍(Ⅱ)可用反萃取方法,即先用小于0.05mol/LH_2SO_4溶液反萃取镍(Ⅱ)后,再用NaCl(50g/L)和HCl(4mol/L)的混合液反萃取钴,经多级反萃可使钴反萃完全。若在水相添加适量的(NH_4)_2S_2O_8,或通入空气,或把料液敝开静置,均可使钴(Ⅱ)氧化成钴(Ⅲ)的氨合配离子。此时钴的萃取率下降,而镍的萃取率不变。这样控制适合的条件,便可以通过单级萃取有效地分离钴镍研究。结果还表明,在酸性溶液中铜(Ⅱ)、铁(Ⅲ)可被N_(530)萃取,但钴、镍不萃,因此可用萃取方法净化除去料液中所含的铜、铁这些杂质金属。  相似文献   

6.
研究从废旧锂离子电池中回收钴并制备棒状草酸钴粉末的工艺。研究结果表明:该工艺采用H2SO4+Na2S2O3为浸出剂对正极材料浸出,在最优条件即液固比为10:1,H2SO4浓度为2.0 mol/L,Na2S2O3浓度为0.15 mol/L,温度为85℃,浸出时间为120 min时,钴的浸出率达96.5%。浸出液中加入碳酸氢铵调节pH至5.0以除出浸出液中的铝和铜,不经过滤操作直接使用次氯酸钠氧化沉淀铁和锰离子,过滤后滤液中仅含铁0.006 g/L,锰0.004 g/L,而钴的损失率仅为1.2%。滤液使用P507萃取分离钴和镍、锂,在相比为1.5:1.0,平衡pH为4.5,P507的体积分数为25%的条件下,经二级逆流萃取后钴的萃取率为99.4%。使用180 g/L的硫酸为反萃剂,相比为4~5时,钴的回收率达99.9%。反萃液使用草酸铵沉钴,沉钴的最优条件为50℃,终点pH为1.5,C2O42与Co2+摩尔比n(C2O42):n(Co2+)=1.15:1。经SEM分析,沉淀而得的钴产品为形貌良好的棒状草酸钴。整个流程方法简便,废旧锂离子电池中钴回收率达到95%,草酸钴中钴含量达31.1%,符合工业要求。  相似文献   

7.
针对P350逆流萃取分离草酸钴沉淀母液中草酸和盐酸的可行性,探讨其萃取机理,考察P350浓度、盐酸浓度、草酸浓度对萃取分配比的影响,设计采用多级逆流萃取草酸并用纯水反萃再生萃取剂.在有机相体积VO与水相体积VA之比(流比)为2.0,6级逆流萃取条件下,草酸萃取率大于95%,萃余母液中的草酸含量可减至0.004mol/L;在流比VO/VA为1.0,10级逆流反萃取条件下,草酸回收率为95%.  相似文献   

8.
采用一种新的二元协萃体系P204/4PC对萃取分离镍与锰、镁、钙进行了研究.考察了有机相配比、平衡pH、平衡时间等因素对萃取分离的影响,并绘制了镍萃取与反萃等温线.结果表明,采用1.25mol/L 4PC(L)+0.25mol/L P204(HA)组成的有机相,经过5级模拟逆流萃取,镍的萃取率达到98.7%,其他杂质金属的萃取率基本都在5%以下.负载有机相经过三级逆流反萃,镍的反萃率达到98.2%,反萃后有机相中镍的质量浓度小于0.1g/L.  相似文献   

9.
制备了5种离子液体1-烷基-3-甲基咪唑六氟磷酸盐[CnMIm][PF6](其中n=4,6,8,10,12),用于头发中超痕量锂的预富集.锂(I)在萃取剂磷酸三丁酯(TBP)、协萃剂FeCl3作用下形成LiFeCI4·2TBP配合物而被萃取进入离子液体介质.有机相中加入盐酸分解锂配合物而使锂(I)进入水相,其水溶液直接用于火焰原子吸收法测定锂.最佳萃取条件:V(TBP):V(IL)=9:1;水相酸度(HCl):0.03 mol/L;相比(V(O):V(A))=7:1;n(Fe):n(Li)=2:1.在此条件下,锂的一次萃取率和反萃率达到78%和90%,富集倍数在100倍以上.机理研究表明,Li+与TBP和FeCl3形成极性较小的LiFeCI4·2TBP络合物而被萃取进入有机相,在有机相中加入盐酸因H+极化强于Li+而将Li+置换重新进入水相.预富集结合火焰原子吸收法应用于头发中超痕量锂的测定,检出限为2.5 ng/L,精密度0.05%,结果令人满意.  相似文献   

10.
用溶剂萃取的方法从镍钼矿冶炼渣酸浸液中回收镍并制备氧化亚镍粉末.研究结果表明:有机相中萃取剂2-乙基己基膦酸-单-2-乙基己基酯(PC-88A)的添加量、相比(即水与油的体积比)、萃取时间、料液的pH对镍萃取有显著的影响,温度对镍的萃取影响很小.最佳萃取工艺条件如下:萃取剂(PC-88A)体积分数为30%,相比为3:1,料液的pH为6.7,萃取时间为3 min,萃取温度为30℃,在此最佳条件下进行二级错流萃取,镍的萃取率为99.6%.反萃的最佳条件如下:相比为1:3,盐酸的浓度为2 mo1/L,反萃时间为3 min,在此最佳条件下,一级镍的反萃率为99.3%.用反萃得到氯化镍先制备草酸镍,然后煅烧,得到纯度达99%氧化亚镍粉末.  相似文献   

11.
谢青 《河南科学》2002,20(2):134-136
制备了配合物 {Co[(C2 H5) 2 NCS2 ]3 } ,经X 射线四圆衍射方法确定了配合物的结构 ,晶体学参数如下 :单斜晶系 ,空间群C2 /c ,C15H3 0 N3 S6Co ,Mr =5 0 3.7,a =1.410 5 (2 ) ,b =1.0 2 99(3) ,c =1.70 5 9(3)nm ,β=110 .15 (1)°,V =2 .32 6 5nm3 ,Z =4.Dc =1.46 6 g/cm3 ,μ =7.77cm-1,F(0 0 0 ) =10 5 6 ,R =0 .0 33,Rw=0 .0 4.中心钴原子由来自二乙胺基硫代甲酸的六个硫原子构成八面体配位结构。Co -S键长和S -Co -S键角分别位于 0 .2 2 6 7(1)~ 0 .2 2 70 (1)nm和 76 .34 (4 )~ 94.48(4 )°之间。  相似文献   

12.
13.
热分解含氨草酸钴复盐制备纤维状多孔钴粉   总被引:1,自引:0,他引:1  
以氨为配位剂,通过配位沉淀法制备纤维状钴粉复杂前驱体,并采用XRD,IR,SEM和TGA/DTA研究前驱体粉末的物相、成分与形貌,系统考察前驱体粉末热分解过程中热分解条件如热分解气氛、热分解温度、热分解时间和升温速率对金属钻粉形貌、粒度和比表面积的影响.研究结果表明:在Co(Ⅱ)-C2042——NH3-NH4+-H2O反应体系中得到的前驱体为含氨草酸钴复盐,形貌为纤维状,氨与钴离子配合并生成含氨草酸钴复盐是纤维状形貌形成的内在机制,它是通过含NH3基配合物以链状结构连接[(NH3)M-OX-M(NH3)]2+生长基元以轴向取向连生形成一维形貌;在弱还原性气氛、热分解时间为30~60 min、升温速率为15~20 K/min、热分解温度为623~723 K条件下,热分解含氨草酸钴复盐粉末可以制备比表面积为10.44 m2·g-1的纤维状多孔金属钴粉,其孔结构为两端开放的管状毛细孔且多为中孔.  相似文献   

14.
以丁二酮肟 (DMG)为显色剂与 Co2+显色反应,生成二元有色络合物,在二元有色络合物基础上再与碘离子形成三元有色络合物,增大有色物质的对单色光吸收能力,提高显色反应的灵敏度.着重系统研究显色反应的影响因素(络合剂用量、温度、酸度、时间)对显色效果的影响,并确定最佳显色参数:λ max=347 nm,ε =1.4× 104 L× mol- 1× cm- 1, pH=5~ 7.线性范围 1.0~ 15 ug/mL,三元有色络合物组成为 Co(DMG)2I2.  相似文献   

15.
An ammonia-based system was used to selectively leach cobalt(Co)from an African high-silicon low-grade Co ore,and the other elemental impurities were inhibited from leaching in this process.This process was simple and environmentally friendly.The results revealed that the leaching ratio of Co can reach up to 95.61%using(NH4)2SO4as a leaching agent under the following materials and conditions:(NH4)2SO4concentration 300 g/L,reductant dosage 0.7 g,leaching temperature 353 K,reaction time 4 h,and liquid-solid ratio 6 mL/g.The leaching kinetics of Co showed that the apparent activation energy of Co leaching was 76.07 kJ/mol(i.e.,in the range of 40-300 kJ/mol).This indicated that the leaching of Co from the Co ore was controlled by an interfacial chemical reaction,and then the developed leaching kinetics model of the Co can be expressed as 1-(1-α)1/3=28.01×10~3×r_0-1×C_((NH4)2SO4)1.5×exp(-76073/8.314 T)×t,whereαis the leaching ratio(%)of Co,r_0 is the average radius(m)of the Co ore particles,T is the temperature(K),and C_((NH4)2SO4)is the initial reactant concentration(kg/m3).  相似文献   

16.
采用一种简单的电化学沉积和退火方法,实现了在碳布基底上碳氮结构修饰氮化钴(CC@Co2 N@CN)材料的制备,并将其用于高性能超级电容器.氮化钴表面修饰的碳氮结构不仅可以提高整个电极的电容,而且可以缓解氮化钴的氧化,从而提高整体的导电性能.同时,CC@Co2 N@CN表现出极长的寿命,在10000次循环后容量仍能保持其初始值的77%.在电流密度为1 m A·cm-2时,该电极的面积电容最高可达429.4 m F·cm-2.因为具有较大的面积电容和良好的循环稳定性能,此类基于碳布基底的氮化钴碳氮结构超级电容器在储能领域具有广阔的应用前景.  相似文献   

17.
中非铜钴矿带某尾矿中的钴资源具有较高的回收价值.为充分开发回收利用其中的钴资源,本文开展了钴浸出工艺中SO_2和焦亚硫酸钠(SMBS)两种还原剂比选研究.研究结果表明,在尾矿粒度-0.074 mm占73.2%,液固比3∶1,终点pH 1.5,硫酸浸出时间为1 h,还原剂浸出时间4 h的优化条件下,SO_2的用量为10 kg/t-矿,而SMBS的用量为3.5 kg/t-矿,且钴的浸出率都能达到84%左右.考虑到SO_2及SMBS的用量和它们的当地价格,认为SMBS作为浸钴工艺的还原剂更具经济性.  相似文献   

18.
Cobalt ferrite nanoparticles (CFNPs) were prepared via a reverse micelle method. The CFNPs were subsequently coated with carbon shells by means of thermal chemical vapor deposition (TCVD). In this process, acetylene gas (C2H2) was used as a carbon source and the coating was carried out for 1, 2, or 3 h at 750°C. The Ar/C2H2 ratio was 10:1. Heating during the TCVD process resulted in a NP core size that approached 30 nm; the thickness of the shell was less than 10 nm. The composition, structure, and morphology of the fabricated composites were characterized using X-ray diffraction, simultaneous thermal analysis, transmission electron microscopy, high-resolution transmission electron microscopy, and selected-area diffraction. A vibrating sample magnetometer was used to survey the samples’ magnetic properties. The deposited carbon shell substantially affected the growth and magnetic properties of the CFNPs. Micro-Raman spectroscopy was used to study the carbon coating and revealed that the deposited carbon comprised graphite, multiwalled carbon nanotubes, and diamond- like carbon. With an increase in coating time, the intensity ratio between the amorphous and ordered peaks in the Raman spectra decreased, which indicated an increase in crystallite size.  相似文献   

19.
文章比较了单核、双核、三核磺化酞菁钴(s-CoPc、b-CoPc、t-CoPc)和1,2-二羧基酞菁钴(CobcPc)的UV-Vis、IR光谱,分析了s-CoPc/CobcPc和顺二硫氰根-双(2,2'-联吡啶-4-羧酸-4'-羧酸四丁基铵)合钌(Ⅱ)(N719)协同敏化的纳米TiO2薄膜的UV-Vis吸收性能,利用循环伏安法研究了s-CoPc、CobcPc的氧化还原行为.结果表明,s-CoPc在Q带的最大吸收峰位于655 nm,b-CoPc、t-CoPc最大吸收峰分别红移至658 nm和663 nm,先吸附N719后吸附s-CoPc的纳米TiO2薄膜以及共吸附CobcPc和N719的纳米TiO2薄膜的协同敏化效果好.  相似文献   

20.
磷酸钴纳米粒子的微波辐射制备法   总被引:2,自引:0,他引:2  
介绍用微波辐射法对磷酸钴纳米粒子的制备方法和分离方法.并对磷酸钴纳米粒子进行了结构和组成的测试,讨论了影响粒子形成的主要因素.通过实验得到了平均粒径为50.64nm的球形微粒的磷酸钴纳米粒子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号