首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
采用原子矩阵法确定了二甲醚经低碳烯烃制正辛烷和对二甲苯的独立反应数,并通过建立平衡关系,采用文献介绍方法,计算了各个反应的反应热、平衡常数及反应平衡时的平衡组分浓度。经分析表明,反应属放热反应;模型中绝大多数反应能自发进行,并且平衡转化率较高;低温高压有利于正辛烷的生成,而低温低压有利于对二甲苯的生成;丙烯生成正辛烷和对二甲苯的转化率远高于乙烯和丁烯,因此控制中间产物丙烯的含量有利于控制目的产物的产出。  相似文献   

2.
正癸烷脱氢生成直链单烯烃的热力学分析   总被引:1,自引:1,他引:0  
较详细地计算了正癸烷脱氢生成各直链单烯烃主反应的热力学平衡参数,并对产物分布以及温度,压力,氢/烃和惰性气/烃摩尔比对平衡的影响地进行了分析,为工业化操作及内烯烃的开发利用提供了一定的理论依据.  相似文献   

3.
针对目前乙苯脱氢氧化文献中尚无完整的热力学分析数据,本文计算了乙苯脱氢过程各主、副反应的热力学平衡常数及平衡转化率,分析了消氢率与平衡转化率的关系;计算了乙苯脱氢氧化的反应热效应,分析了转化率、消氢率与反应热效应的关系。从反应耦合和热量耦合的角度对乙苯脱氢氧化的增产节能原理作了初步热力学分析。  相似文献   

4.
《天然气化工》2020,(3):37-44
CO_2作为氧化剂,不仅能促进有机物脱氢反应、避免深度氧化副反应,而且本身转化为CO,实现资源化利用。本文综述了CO_2氧化有机物脱氢反应催化剂研究进展,并进行了平衡转化率计算,结果表明,文献报道的催化剂上反应物转化率与其平衡转化率尚有较大差距,因此,开发高活性催化剂仍是提高脱氢反应效率的主要方向;对CO_2为氧化剂可能的正丁烯、环己烷、甲醇、5-羟甲基糠醛脱氢反应进行了热力学计算,结果表明,较单纯脱氢反应,加入CO_2能显著提高平衡转化率;尤其是发现5-羟甲基糠醛脱氢制呋喃二甲醛反应,CO_2加入打破了热力学限制,且可获得较高的平衡转化率,这对生物质平台分子5-羟甲基糠醛的高效利用具有重要指导意义。  相似文献   

5.
蒲江龙  翁惠新 《石油化工》2013,42(11):1229-1234
根据甲醇制烯烃(MTO)的反应机理,建立了包括10个主副反应的热力学模型。采用四参数法对MTO反应进行热力学计算,得到各反应的焓变、吉布斯自由能变和平衡常数随温度的变化规律。利用Aspen Plus软件对MTO反应的热力学体系进行了模拟,并从热力学角度研究了温度、压力和水含量对MTO反应平衡组成的影响。实验结果表明,MTO的大多数反应为强放热反应,且各反应均能自发进行;四参数法的计算值与Aspen Plus模拟值吻合良好;温度对反应平衡组成的影响最大,高温有利于低碳烯烃的生成,可以通过控制温度调节乙烯与丙烯的产出比;压力和水含量对平衡组成的影响不大,增加压力和水含量均不利于低碳烯烃的生成。  相似文献   

6.
对膜反应器的指标反应——环己烷脱氢生成苯进行了热力学分析,计算了反应体系在不同温度条件下的吉布斯自由能变、平衡常数及不同H2移出率时环己烷的平衡转化率,据此比较了膜反应器相对于固定床反应器在提高环己烷平衡转化率方面的潜力,并进一步分析了膜反应器内不同H2移出率时环己烷平衡转化率相对于固定床反应器增加的百分点数及不同H2移出率对反应苛刻度的影响。结果表明,膜反应器可有效地提高环己烷的平衡转化率,并可降低反应的苛刻度,具有良好的工业应用前景。  相似文献   

7.
《石油化工应用》2019,(11):97-102
本文关注膜反应器中乙苯脱氢生成苯乙烯这一反应体系,通过热力学分析,首先计算了不同条件下,该反应体系的吉布斯自由能变ΔG及平衡常数K。由于膜反应器可实现反应过程中所生成H2的选择性移除分离,从而可打破反应热力学平衡限制,促使平衡向生成反应产物苯乙烯的方向移动,提高乙苯的平衡转化率。因此,本文着重计算分析了H2移出时乙苯平衡转化率的变化情况,并与传统固定床反应器进行了对比分析,印证了膜反应器在促进乙苯脱氢制苯乙烯转化率提高方面的优势。  相似文献   

8.
二氧化碳氧化丙烷制丙烯的热力学分析   总被引:9,自引:3,他引:6  
对丙烷直接脱氢和用二氧化碳氧化丙烷脱氢制丙烯过程进行了热力学计算,计算结果表明:在相同的反应条件下,二氧化碳氧化丙烷脱氢比丙烷脱氢比丙烷直接脱氢有更高的C3H8平衡转化率,且C3H8平衡转化率随温度的增加呈单调升高,减小反应体系的压力、增大反应气中CO2/C3H8(mol)比值,对提高C3H8平衡转化率有利。  相似文献   

9.
 对异丁烷脱氢制异丁烯反应进行了较为详细的热力学分析,得到了不同反应温度下的标准摩尔焓变、标准摩尔吉布斯自由能变和标准平衡常数值,同时分析了温度、压力、氢/烃及惰性气/烃摩尔比对反应平衡的影响。结果表明,异丁烷脱氢属强吸热反应,进料的反应吸热量高达122 kJ/mol;反应温度和压力是影响异丁烷脱氢过程的2个主要因素,提高反应温度、降低反应压力均可显著提高异丁烷的平衡转化率;降低氢/烃摩尔比或提高惰性气/烃摩尔比也可以在一定程度上提高异丁烷的平衡转化率。  相似文献   

10.
《精细石油化工》2015,(6):63-67
对丁烯催化脱氢和氧化脱氢制丁二烯两种反应体系进行了热力学分析,得到反应的标准摩尔焓变Δ_rH_m~θ、标准摩尔吉布斯自由能变Δ_rQ_m~θ和标准平衡常数K_p~θ等基础数据,考察了温度、压力和水烯比等对催化脱氢反应平衡转化率的影响,以及空气中氧气浓度、水烯比和副反应对氧化脱氢反应绝热温升的影响。结果表明:丁烯催化脱氢单程转化率低,高温、低压、高水烯比有利于提高平衡转化率;丁烯氧化脱氢为强放热反应,绝热温升较大,采用空气、高水烯比和高选择性可降低反应的绝热温升。  相似文献   

11.
采用基于密度泛函理论的量子化学方法研究了催化重整过程中正庚烷脱氢生成烯烃的反应过程。通过对比2条不同的反应路径得出, Pt原子在脱氢反应中生成的Pt H活性中心具有吸取单电子的能力,具有较强的脱除氢自由基的催化能力。反应过程中,正庚烷首先在0价态的Pt原子表面发生化学吸附,随后发生脱除氢自由基反应,生成庚基自由基和Pt H活性中心,优先生成2 庚基自由基,最低反应能垒为7589 kJ/mol;庚基自由基直接与Pt H催化剂活性中心发生化学吸附,进一步发生脱除氢自由基反应,生成庚烯与Pt H2,优先生成2 庚烯,最低反应能垒为1752 kJ/mol;最终,庚烯从Pt H2表面发生脱附,随后Pt H2发生脱附反应生成H2和再生的0价态的单Pt催化剂。该反应路径中最大反应能垒为7589 kJ/mol。实验证明,正庚烷脱氢生成正庚烯的反应过程中优先生成2 庚烯。  相似文献   

12.
本研究以高度18 m,直径为80 mm的提升管反应器为研究对象,基于装置稳定运行状态下提升管不同轴向位置的压力数据,应用功率谱密度方法分析了其内部的气固流动特征。研究结果表明,功率谱密度呈现低频高能的现象,提升管内的压力信号波动主要受气固间相互作用包括气固相互摩擦、颗粒间碰撞、聚并等行为的控制,随着颗粒循环速率的增大,提升管内颗粒行为发生频次升高,压力波动程度增强。随着提升管轴向位置的升高,压力信号波动程度逐渐减弱,其中在提升管顶部区域功率谱的低频高能现象基本消失,说明在提升管底部区域气固间的相互作用较强,引起压力波动程度较大,而充分发展区域内的气固间相互作用处于稳定状态,压力波动较弱。  相似文献   

13.
通过水热法成功合成了锆掺杂的MCM 48(Zr MCM 48)介孔材料,并用离子交换制得H Zr MCM 48催化剂。采用X射线衍射(XRD)、透射电镜(TEM)、氮气吸附 脱附等测试手段对样品进行表征。结果表明,所合成的Zr MCM 48及H Zr MCM 48仍保持立方有序介孔结构,H Zr MCM 48催化剂的酸性及催化稳定性均有所提高。在正庚烷异构化探针反应中,同等反应条件(锆/硅摩尔比为002、反应温度为260℃、反应时间为130 min)下,与Zr MCM 48相比,H Zr MCM 48对正庚烷异构化反应的催化性能更好,转化率和选择性分别达到446%和945%。相对较高的多支链异庚烷产物比例表明,所合成的H Zr MCM 48催化剂对于烷烃异构化有良好的应用潜力。  相似文献   

14.
反应条件对钴催化混合辛烯氢甲酰化反应的影响   总被引:1,自引:1,他引:0  
魏岚  贺德华  董国利 《石油化工》2004,33(6):512-515
采用醋酸钴为催化剂前体研究了钴催化剂对混合辛烯氢甲酰化制备异壬醛的催化性能,并考察了溶剂及反应条件的影响。实验结果表明,选用甲醇作溶剂,促进了钴催化剂在底物烯烃中的完全溶解,从而有效地提高了原料转化率和异壬醛的收率;反应温度、反应压力、催化剂用量和反应时间等参数对产物异壬醛的收率均有影响,且存在一个最佳范围,即在反应温度160℃、压力8MPa、催化剂用量(Co与烯烃的摩尔比)为0.01、反应时间5h时,可以获得混合辛烯转化率83%、醛收率55.4%的结果。  相似文献   

15.
采用沉淀法制备了磷钨酸银(Ag3H3P2W18O62〖KG-*3〗·〖KG-*3〗nH2O)催化剂,通过FT IR、UV Vis、XRD、EDX、 SEM、NH3 TPD 对其进行了表征,并用于催化乙酸与正丁醇酯化合成乙酸正丁酯反应。结果表明,合成的〖JP〗Ag3H3P2W18O62〖KG-*3〗·〖KG-*3〗nH2O 具有Dawson结构,呈微球状,粒子大小在200~300 nm范围;同时具有Brnsted酸和Lewis酸的弱酸中心、强酸中心和超强酸中心,可发挥Brnsted酸性和Lewis酸性催化剂的双重作用,在乙酸和正丁醇的酯化反应中具有良好的催化性能。在优化反应条件下,即醇/酸摩尔比20、反应温度120℃、催化剂质量分数048%(以反应物质量计)、反应时间20 h条件下,酯化率可达970%。催化剂易回收重复使用,重复使用5次,酯化率仍可保持在863%。  相似文献   

16.
制备了一系列咪唑类酸性功能化离子液体,用于催化正戊醛自缩合反应。考察了酸性基团种类、与酸性基团相连碳链长度、阴离子种类对离子液体酸性及其催化性能的影响。在此基础上,考察了反应条件对酸性功能化离子液体1 (4 磺酸丁基) 3 甲基咪唑对甲苯磺酸盐([HSO3 bmim]p TSA)催化性能的影响和离子液体的催化稳定性;采用密度泛函理论模拟了离子液体[HSO3 bmim]p TSA与正戊醛的相互作用情况,探讨了其催化正戊醛自缩合反应机理。结果表明:酸性较强的磺酸功能化离子液体催化活性明显高于羧酸功能化离子液体;对于磺酸功能化离子液体,正戊醛的转化率与离子液体酸强度正相关;[HSO3 bmim]p TSA具有最好的催化性能。[HSO3 bmim]p TSA催化正戊醛自缩合反应适宜的反应条件为:反应温度120 ℃,反应时间6 h,催化剂质量分数8%。在此条件下,正戊醛的转化率为886%;2 丙基 2 庚烯醛的收率和选择性分别为808%和912%。[HSO3 bmim]p TSA至少可循环使用6次,其催化性能基本保持不变。在理论模拟的基础上提出了[HSO3 bmim]p TSA催化正戊醛自缩合反应的机理。  相似文献   

17.
在固定床微反反应器上,研究了TiO2对CO水合制低碳醇反应的催化性能。考察了反应条件如温度、压力、CO流速等对催化剂反应性能的影响,在T=573K,p=0 5MPa,CO进气流速30ml/min的条件下,CO转化率达到7 6%,甲醇、乙醇的总收率达到32mg/g/h。另外考察了反应的溶剂效应,溶剂的作用与其碱性有密切关系,强碱性的有机多胺能够有效促进该反应,相对于非极性溶剂的醇收率2 2mg/g/h,在碱性溶剂中相同催化剂的活性最高可达到32 24mg/g/h。还考察了不同晶型TiO2催化剂与反应性能的关系,实验结果表明,TiO2催化剂的热处理温度对反应的CO转化率影响不明显,甲、乙醇的收率却随热处理温度的上升而明显增加,在1023K时,即锐钛矿与金红石质量比为9/2的混晶催化剂,醇产物达到最高,为1 82mg/m2/h,随后下降  相似文献   

18.
采用反应动力学研究装置,以强酸性离子交换树脂Amberlyst46TM为催化剂,研究正丙醇和丙酸合成丙酸丙酯的反应动力学。在消除了内外扩散的情况下,考察了催化剂用量、醇/酸摩尔比、反应温度和搅拌转速对丙酸转化率的影响。在催化剂用量15 g、醇/酸摩尔比12、反应温度80℃、搅拌转速400 r/min的较优操作条件下,确定了反应动力学参数,获得动力学数据反应活化能Ea=4035 kJ/mol,指前因子k0=216×103 L/(mol·min),并运用于稳态模拟中,考察了进料温度以及各段塔板数对产物纯度的影响。优化后的操作条件为进料温度70℃、精馏段塔板数2、反应段板数21、提馏段塔板数11,此时丙酸丙酯产品的摩尔分数达到9988%以上。  相似文献   

19.
采用分子动力学(MD)和巨正则蒙特卡洛(GCMC)方法,模拟正辛烷和1-辛烯在Ce离子改性Y型分子筛上的吸附行为。分析了303 K、423 K温度下正辛烷、1-辛烯分子在CeY中的吸附等温线并对模拟数据进行了Langmuir-Freundlich模型拟合,结合吸附过程的势能分布曲线、分子势能分布密度以及吸附热等数据探究吸附规律。结果表明:正辛烷与1-辛烯在CeY上的吸附,符合Langmuir-Freundlich等温吸附模型,正辛烷与1-辛烯和CeY孔道中的Na+相互作用较强,与Ce(OH)2+间相互作用较弱且随着吸附压力的增大逐渐减小;正辛烷比1-辛烯更容易吸附在CeY上,饱和吸附量更高,最可几相互作用更大,势能随温度变化更大,且正辛烷的吸附热在吸附起始阶段大于1-辛烯,在接近饱和吸附时略小于1-辛烯。这是由于1-辛烯内部存在的C=C键产生了较弱的π-π相互作用,随着温度和吸附量的增加,使得分子间相互作用力较正辛烷更为明显。  相似文献   

20.
采用高压反应釜,在温度为343~380 K,压力为2~5 MPa的条件下,测定了氢气(H2)和一氧化碳(CO)在混合辛烯中的溶解度,并采用正规溶液理论中的Prausnitz-Shair方法得出相应的计算值。结果表明,H2和CO在混合辛烯中的溶解度随着压力或温度的升高而增大,且在相同的温度和压力下,CO在混合辛烯中的溶解度大于H2的溶解度;H2,CO溶解度计算值与实验值最大相对误差分别为11.3%,6.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号