首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 248 毫秒
1.
乙烯—醋酸乙烯酸共聚物对茂金属聚乙烯的改性研究   总被引:2,自引:2,他引:2  
以添加不同比例的茂金属聚乙烯(mLLDPE)/乙烯-醋酸乙烯酯(EVA)共混物为研究对象,考察了EVA含量对mLLDPE/EVA共混物的力学性能,热性能,流变性能,动态力学性能和形态结构的影响,研究结果表明,EVA添加到mLLDPE中,增加了mLLDPE的剪切敏感度,降低了mLLDPE的熔融粘度,改善了mLLDPE的流动性和加工性,在一定的添加比例范围内mLLDPE和EVA具有很好的相容性,可以在改善mLLDPE加工性能,引入极性基团的同时又保持与纯mLLDPE相近的力学性能,但会导致共混物材料的刚性下降,柔性增加,热分析数据说明,mLLDPE/EVA共混体系中,在EVA含量较小时共混物存在大量共晶,与mLLDPE有很好的相容性,无论是熔融曲线还是降温曲线都只出现一个峰,当EVA含量增大时,mLLDPE/EVA共混物出现相分离,曲线出现双峰,但两峰值呈现靠近趋势,预示mLLDPE/EVA共混物中仍存在少量共结晶。  相似文献   

2.
mLLDPE/EPPE共混体系的流变行为、结晶形态与力学性能研究   总被引:1,自引:1,他引:0  
研究了不同比例共混的茂金属线性低密度聚乙烯(mLLDPE)和易加工聚乙烯(EPPE)熔体的流变学行为,讨论了共混物组成,剪切速率和剪切应力以及温度对熔体流变曲线,熔体黏度和非牛顿指数的影响。结果表明:随着EPPE含量的增加,共混熔体的黏度呈线性下降,非牛顿指数逐渐减小,黏流活化能先升高后下降,mLLDPE的流动性和加工性能得到改善,而力学性能显示:EPPE在改善mLLDPE流变加工性能的同时可以很好保持mLLDPE的优良性能。  相似文献   

3.
EVA/木质素薄膜的制备与性能研究   总被引:3,自引:0,他引:3  
研究了经造粒、吹塑成膜的乙烯醋酸乙烯酯共聚物(EVA)/木质素共混物的结构、热性能以及力学性能。热重分析表明木质素与EVA共混物的热稳定性比单一组分的高;差示扫描量热分析表明木质素与EVA的相容性好;傅里叶红外光谱分析表明木质素与EVA之间存在分子间氢键相互作用;扫描电子显微分析表明木质素含量对共混物形貌有明显的影响;力学性能测试表明木质素含量在30%(质量分数,下同)以内,共混物薄膜仍具有较好的力学性能,随着木质素含量的增加,共混物力学性能降低。  相似文献   

4.
实验通过熔融共混制备聚对苯二甲酸丁二醇酯(PBT)/聚己内酯(PCL)共混物,共混物中PCL的质量百分比从10%变化到90%,间隔为10%.实验研究PCL树脂质量百分比对共混物相容性、热性能、力学性能、相形态、熔融及结晶行为的影响.DMA和DSC热分析结果表明:PBT和PCL是部分相容体系,相容性随PCL含量的增加而增加,PCL的加入降低了PBT/PCL共混物中PBT相的熔点,改善了PBT的结晶能力.通过SEM对PBT/PCL共混物的相形态研究表明:PBT/PCL共混物具有两相结构,PCL质量含量为50%时发生相反转.力学性能分析结果表明:PCL能够增韧PBT,但效果不明显.  相似文献   

5.
方宏 《塑料工业》2013,(12):29-31
研究了茂金属线型低密度聚乙烯(mLLDPE)、mLLDPE/低密度聚乙烯(LDPE)共混物的热性能、流变性能及薄膜样品的基本性能。热性能结果表明,在mLLDPE中添加LDPE使样品的结晶温度明显下降;毛细管流变试验结果表明,LDPE的添加使mLLDPE的剪切敏感性显著提高,利于其加工;薄膜样品性能研究结果表明,mLLDPE使得LDPE的力学性能明显提高,光学性能明显改善。  相似文献   

6.
采用DSC、WAXD和SAXS相结合的方法研究了共混物的相分离、结晶度、片晶厚度等结晶结构参数。研究结果表明,在m-PE-LLD/PE-LD共混物中,当PE-LD含量较大时无论是熔融曲线还是降温曲线都只出现一个峰,说明两者存在共结晶,有很好的相容性。当PE-LD含量减小时,共混物出现相分离,升、降温曲线均出现双峰,但两峰值呈现靠近趋势,预示m-PE-LLD/PE-LD共混物中仍存在少量共结晶。WAXD数据显示,PE-LD添加到m-PE-LLD中,没有改变茂金属聚乙烯固有的晶体结构,共混物仍然保持了聚乙烯的正交晶系结构。并随着PE-LD在m-PE-LLD中添加比例的增加,共混物正交晶系增强的同时晶粒尺寸变小。  相似文献   

7.
Lignin/EVA复合材料由EVA与碱木质素(Lignin)在转矩流变仪中共混后经平板硫化仪热压制得。主要研究了不同VA含量的EVA对Lignin/EVA复合材料性能的影响,扫描电子显微镜(SEM)和热分析(DSC)测试结果表明, VA含量较高的EVA与Lignin的相容性更好;力学性能测试结果表明VA含量高的Lignin/EVA复合材料的力学性能优于EVA,而VA含量低的Lignin/EVA复合材料不敌纯EVA;针对相容性不理想的Lignin/EVA复合材料,研究了不同相容剂硬脂酸(SA)、环氧树脂E44 (E44)、乙烯-醋酸乙烯酯共聚物接枝马来酸酐(EVA-g-MAH)、聚乙烯接枝马来酸酐(PE-g-MAH)对复合材料力学性能的影响。SEM结果表明,上述相容剂均在一定程度上改善了Lignin与EVA基体之间的相容性;从力学性能上看,改善相容性效果最佳的是E44,与未添加相容剂的Lignin/EVA复合材料相比,添加了E44的Lignin/EVA复合材料拉伸强度增加了10.4%。  相似文献   

8.
沈晓洁  邱桂学 《中国塑料》2016,30(12):35-40
通过熔融共混的方法制备了聚甲醛(POM)/乙烯-乙酸乙烯酯(EVA)共混物,并对共混物的力学性能、结晶性能以及形貌进行了研究。结果表明,纯POM的缺口冲击强度只有7.6 kJ/m2,加入EVA橡胶后,共混物的缺口冲击强度得到了明显提高,但随着橡胶用量的增加,材料的弯曲模量与拉伸强度不断下降;EVA 的存在影响着POM的结晶性能,使结晶度下降;POM与EVA的两相界面比较清晰,表明两者的相容性不好,但合适的分散相粒径分布有利于EVA增韧POM。  相似文献   

9.
讨论了不同高密度聚乙烯(HDPE)含量的乙烯-醋酸乙烯酯共聚物(EVA)/HDPE共混物的流变性能、热性能、相容性,以及共混纤维的可纺性、力学性能。实验结果表明:随着HDPE含量的增加,共混物的流动性变差;共混物的晶区是部分相容的。当共混物中HDPE的百分含量为15%时,共混物的可纺性及共混纤维的力学性能最佳;随着拉伸倍数的增加,共混纤维断裂强度增大、断裂伸长率降低。  相似文献   

10.
研究了PA6/HDPE、PA6/HDPE/EVA共混物的密度、热性能和力学性能。PA6/HDPE/EVA三元共混物的力学性能比PA6/HDPE二元共混物有明显提高。对于拉伸强度,EVA的最佳含量在2~4份。冲击强度随EVA含量的增加而提高,EVA的含量小于5份时,对共混物的硬度几乎没有影响。  相似文献   

11.
Maleic anhydride grafted polypropylene (MAPP) was blended with ethylene–vinyl acetate (EVA) copolymer to form MAPP/EVA polymer blends. Wood powder (WP) was mixed into these blends at different weight fractions to form MAPP/EVA/WP blend composites. Differential scanning calorimetry (DSC) analysis of the blends showed small melting peaks between those of EVA and MAPP, which indicated interaction and cocrystallization of fractions of EVA and MAPP. The presence of MAPP influenced the EVA crystallization behavior, whereas the MAPP crystallization was not affected by the presence of EVA. Scanning electron microscopy, Fourier transform infrared spectroscopy, and DSC results show that the WP particles in the MAPP/EVA blend were in contact with both the MAPP and EVA phases and that there seemed to be chemical interaction between the different functional groups. This influenced the crystallization behavior, especially of the MAPP phase. The thermogravimetric analysis results show that the MAPP/EVA blend had two degradation steps. An increase in the WP content in the blend composite led to an increase in the onset of the second degradation step but a decrease in onset of the first degradation step. The presence of WP in the blend led to an increase in the modulus but had almost no influence on the tensile strength of the blend. The dynamic mechanical analysis results confirm the interaction between EVA and MAPP and show that the presence of WP only slightly influenced the dynamic mechanical properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Two types of wax were added to a ethylene vinyl acetate (EVA) copolymer/aromatic hydrocarbon resin (tackifier) blend in the molten state and the miscibility, viscoelastic and adhesion properties of ternary blends as hot-melt adhesives (HMAs) were investigated. Miscibility and viscoelastic properties were studied using differential scanning calorimetry (DSC), Brookfield viscometry and dynamic mechanical thermal analysis (DMTA), and their adhesion strength was determined in terms of single lap shear strength. DSC thermograms of both types of waxes showed their melting peaks in a similar region to that of EVA/tackfier blend. It was difficult to evaluate the miscibility of ternary blends using DSC because the melting peaks of the waxes overlapped with those of the EVA/tackifier blend, although the glass transition temperature (T g) of the ternary blend systems slightly increased with increasing wax concentration. However, their storage modulus (E′) increased slightly and loss tangent (tan δ) showed different peaks when two types of wax were added to the EVA/tackifier blend. Therefore, the miscibility of EVA/tackifier blend altered with addition of waxes. In addition, their melt viscosity decreased with increasing wax concentration. Furthermore, the adhesion strength of the ternary blends decreased with increasing wax concentration, despite the increment of storage modulus. These results suggested that the ternary blends of EVA/tackifier/wax were heterogeneous.  相似文献   

13.
The effects of the blend ratio, reactive compatibilization, and dynamic vulcanization on the dynamic mechanical properties of high‐density polyethylene (HDPE)/ethylene vinyl acetate (EVA) blends have been analyzed at different temperatures. The storage modulus of the blend decreases with an increase in the EVA content. The loss factor curve shows two peaks, corresponding to the transitions of HDPE and EVA, indicating the incompatibility of the blend system. Attempts have been made to correlate the observed viscoelastic properties of the blends with the blend morphology. Various composite models have been used to predict the dynamic mechanical data. The experimental values are close to those of the Halpin–Tsai model above 50 wt % EVA and close to those of the Coran model up to 50 wt % EVA in the blend. For the Takayanagi model, the theoretical value is in good agreement with the experimental value for a 70/30 HDPE/EVA blend. The area under the loss modulus/temperature curve (LA) has been analyzed with the integration method from the experimental curve and has been compared with that obtained from group contribution analysis. The LA values calculated with group contribution analysis are lower than those calculated with the integration method. The addition of a maleic‐modified polyethylene compatibilizer increases the storage modulus, loss modulus, and loss factor values of the system, and this is due to the finer dispersion of the EVA domains in the HDPE matrix upon compatibilization. For 70/30 and 50/50 blends, the addition of a maleic‐modified polyethylene compatibilizer shifts the relaxation temperature of both HDPE and EVA to a lower temperature, and this indicates increased interdiffusion of the two phases at the interface upon compatibilization. However, for a 30/70 HDPE/EVA blend, the addition of a compatibilizer does not change the relaxation temperature, and this may be due to the cocontinuous morphology of the blends. The dynamic vulcanization of the EVA phase with dicumyl peroxide results in an increase in both the storage and loss moduli of the blends. A significant increase in the relaxation temperature of EVA and a broadening of the relaxation peaks occur during dynamic vulcanization, and this indicates the increased interaction between the two phases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2083–2099, 2003  相似文献   

14.
Uncrosslinked and chemically crosslinked binary blends of low‐ and high‐density polyethylene (PE), with ethylene vinyl acetate copolymer (EVA), were prepared by a melt‐mixing process using 0–3 wt % tert‐butyl cumyl peroxide (BCUP). The uncrosslinked blends revealed two distinct unchanged melting peaks corresponding to the individual components of the blends, but with a reduced overall degree of crystallinity. The crosslinking further reduced crystallinity, but enhanced compatibility between EVA and polyethylene, with LDPE being more compatible than HDPE. Blended with 20 wt % EVA, the EVA melting peak was almost disappeared after the addition of BCUP, and only the corresponding PE melting point was observed at a lowered temperature. But blended with 40% EVA, two peaks still existed with a slight shift toward lower temperatures. Changes of mechanical properties with blending ratio, crosslinking, and temperature had been dominated by the extent of crystallinity, crosslinking degree, and morphology of the blend. A good correlation was observed between elongation‐at‐break and morphological properties. The blends with higher level of compatibility showed less deviation from the additive rule of mixtures. The deviation became more pronounced for HDPE/EVA blends in the phase inversion region, while an opposite trend was observed for LDPE/EVA blends with co‐continuous morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3261–3270, 2007  相似文献   

15.
The nonisothermal crystallization process has been investigated by Fourier transform infrared (FTIR) micro‐spectroscopy for the 40/60 wt % blends of metallocene linear low density polyethylene (m‐LLDPE) and ethylene/vinyl acetate copolymer (EVA) at the molecular level. In the cooling process, thermal spectra of mLLDPE/EVA blends were collected between 150°C and 67°C at 1°C interval. According to the van't Hoff equation at constant pressure, the changes of absorbance ratio corresponding to high and low vibrational states were calculated; hereby, apparent enthalpy differences of vibration energy states transformation (?Hv) of characteristic groups could be obtained. Combining with DSC analysis, two exothermal peaks were examined in the crystallization process, corresponding to mLLDPE‐rich and EVA‐rich domains, respectively; while in comparison of the ?Hv values of various characteristic groups corresponding to the two exothermal peaks, the bending vibrational mode of methylene groups has been found to make a prominent contribution to the movement and regular arrangement of mLLDPE and EVA chain segments towards each rich domain in the crystallizing process. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 261–267, 2005  相似文献   

16.
Epoxidized natural rubber/Ethylene vinyl acetate copolymer (ENR‐50/EVA) blends with different ratios were prepared by using a Haake internal mixer. The effect of the blend ratio on the processing, tensile properties (such as tensile strength, elongation at break, Young's modulus and stress–strain behavior), morphology, dynamic mechanical properties, and thermal properties has been investigated. The tensile properties increase with the increase of EVA content, whereas the stabilization torque increases with the increase of ENR‐50 content in the blend. In 40:60 and 50:50 blend of ENR‐50/EVA, both the phases exist as continuous phases, producing a co‐continuous morphology. At these blend ratio, the drastic change in properties were noted, indicating that the phase inversion occurs. The results on dynamic mechanical properties revealed that the blends are compatible. Blending of ENR‐50 and EVA lead to the improvement in thermal stability and 50:50 blend ratios is the most stable blend. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1504–1515, 2006  相似文献   

17.
Poly (ethylene-co-vinyl acetate) (EVA) has been used as a compatibilizer for heterogeneous natural rubber/acrylonitrile butadiene rubber (NR/NBR) blends. NR/NBR (50/50) blends were compatibilized with varying amounts, from 0 to 10 parts per hundred rubber (phr), of EVA. The compatibility of the blend components in presence of EVA has been evaluated in terms of mechanical and sorption characteristics. The mechanical properties were found to be improved by the addition of EVA upto 6 phr. The solvent resistance of the compatibilized samples has been observed to be higher compared to the uncompatibilized blends; attributed to the increased interfacial adhesion between the blend components. DSC studies showed a shift of glass transition temperatures of the blend components towards higher temperatures indicating increased rigidity of the matrix in presence of EVA.  相似文献   

18.
以回收聚对苯二甲酸乙二醇酯(rPET)为基体材料,茂金属线型低密度聚乙烯(mLLDPE)为共混材料,马来酸酐接枝线型低密度聚乙烯(LLDPE-g-MAH)、丙烯酸酯复合接枝苯乙烯-丁二烯弹性体为相容剂,制备了rPET/mLLDPE共混物。采用DSC和SEM分析了相容剂对共混物结晶性能及断面结构的影响,并检测了共混物的力学性能。结果表明:mLLDPE的加入使得rPET/mLLDPE共混物的熔体结晶峰向右移动,结晶温度提高了29.03℃;相容剂的加入使得共混物中rPET的玻璃化转变温度向低温方向移动,rPET与mLLDPE相容性增强;含3%LLDPE-g-MAH的rPET/mLLDPE共混物中,MAH基团与rPET中的羟基发生接枝反应,相界面模糊,rPET与mLLDPE界面黏结力增强,与纯rPET相比,其断裂伸长率提高了93.73%,缺口冲击强度提高了54.6%。  相似文献   

19.
Electron beam (EB) irradiation of polyvinyl chloride (PVC) was carried out in the presence of three different ethylene–vinyl acetate copolymers (EVA). The mechanical properties of the original and irradiated blends were tested. The gel content measurement, chlorine loss upon electron irradiation, and gel permeation chromatograph (GPC) were used to characterize the effect of EVA on the irradiation behavior of PVC/EVA blends. The content and the chemical structure of EVA in the blends had considerable effects on the mechanical properties and gel content of the blends. The incorporation of EVA into PVC blend can increase the gel content and reduce chlorine loss of the blends. The GPC analysis of the soluble part in the irradiated PVC samples showed that the addition of EVA into the PVC blend lowered the polydispersity of molecular weight of PVC. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1571–1575, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号