首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimal cuts of langasite, La3Ga5SiO14 for SAW devices   总被引:1,自引:0,他引:1  
The results of a theoretical and experimental investigation of the SAW propagation characteristics in an optimal region of langasite defined by the Euler angles φ from -15° to +10°, &thetas; from 120° to 165°, and ψ from 20° to 45° are presented. Based on temperature coefficients of the elastic constants derived from experimental data, some optimal orientations of langasite characterized by high electromechanical coupling factor (k2), zero power flow angle (PFA) and low or zero temperature coefficient of frequency (TCF) were found. The SAW velocity in the region of interest is highly anisotropic; this results in a significant amount of diffraction, which must be taken into account in the search for orientations useful for SAW devices. An orientation having simultaneously zero PFA, zero TCF, negligible diffraction, and relatively high piezoelectric coupling has been found and verified experimentally. The experimental results are in excellent agreement with the calculated SAW characteristics. The frequency response of a SAW device fabricated on the optimal cut of langasite is presented and demonstrates that high performance SAW filters can be realized on this optimal cut of langasite  相似文献   

2.
The scattering matrix method was used to derive an expression for the reflection coefficient of a one-port SAW resonator. This expression was applied to calculations of an input admittance of a synchronous resonator on ST-cut quartz. Very good agreement was obtained between calculated and measured parameters of the resonator.  相似文献   

3.
周冉  童筱筠  章德 《声学技术》2001,20(2):78-80
文章主要研究了Y旋转ST-石英基片上准纵漏表面声波(快速声表面波)的传播特性。它的相速度是常规瑞利波的两倍,在某些传播方向可高达7000m/s;在理论与实验上寻找了束偏向和延时温度系数均较小的切割传播方向,例如,沿欧拉角(0°,155.25°,42°)方向的准纵漏表面声波的相速度为6153m/s,延时温度系数为11ppm/℃,其声波能流方向基本上与波的传播矢量方向相一致。实验证明放置于基片表面的液体对准纵漏表面声波的吸收不大,说明声波的质点振动与传播方向一致(沿表面方向),具有纵波的性质。  相似文献   

4.
New materials of the trigonal 32 class have received much attention recently, due to their quartz-like temperature behavior and the promise of higher electromechanical coupling coefficients. The magnitude and phase of the reflection coefficient of the metal strips that form the SAW transducers and reflector structures is a critical parameter that allows proper device designs and optimal material surface orientation. This paper describes an investigation of the magnitude and phase of the SAW metal strip reflectivity in some new materials and along now orientations. The materials are langanite, langasite, and gallium phosphate. The results are presented as contour plots of the magnitude and phase of the reflection coefficient. In addition, the phase velocity, temperature coefficient of delay, electromechanical coupling coefficient, and power flow angle are given, thus allowing proper orientation selection for SAW device designs. The results presented highlight the reflection coefficient calculations in the selection of natural single-phase unidirectional transducer orientations (NSPUDT) for these new materials. The orientation regions suggested in this paper for the new materials are thus very promising for low-loss, high-performance consumer and communications SAW designs, such as NSPUDT filters, resonator-based filters, and other devices that can benefit from a high metal strip reflectivity  相似文献   

5.
The authors have succeeded in exciting a new type of leaky surface acoustic wave (LSAW) having only a shear horizontal (SH) component that has a large electromechanical coupling factor, a large reflection coefficient, and excellent temperature stability, by combining interdigital transducers (IDTs) and reflectors made of heavy-metal films such as gold (Au), tantalum (Ta), and tungsten (W) on the ST-cut 90/spl deg/ X propagation (direction perpendicular to the X-axis) quartz substrate. This LSAW does not have a propagation decay. The square of the electromechanical coupling factor is 2.1-2.7 times larger than, the reflection coefficient is 30 times larger than, and the temperature characteristic is the same as those of a Rayleigh wave on an ST-cut X propagation quartz substrate. The authors applied this SH LSAW to resonators and resonator filters. As a result, we succeeded in developing the low loss and very small-sized resonators and resonator filters (1/5-1/4 of conventional device sizes) with IDTs with a small number of finger pairs and very small reflectors, for the first time.  相似文献   

6.
Pure SH-SAW propagation, transduction and measurements on KNbO3   总被引:1,自引:0,他引:1  
Potassium niobate (KNbO3) supports the electromechanically active pure shear horizontal surface acoustic wave (SH-SAW) mode along Z-axis cylinder orientations, Euler angles (phi, 90 degrees, 0 degrees), in which two uncoupled wave solutions exist: a purely mechanical sagittal Rayleigh SAW and a piezoelectrically stiffened pure SH-SAW. Within this family of cuts, a maximum electromechanical coupling coefficient for the pure SH-SAW, K2 = 53%, is observed along (0 degrees, 90 degrees, 0 degrees). This pure SH-SAW orientation also has the maximum value of electromechanical coupling observed along rotated Y-cut X propagation directions, Euler angles (0 degrees, theta, 0 degrees). The use of the pure SH-SAW mode is attractive for liquid-sensing applications because the SH-SAW is modestly attenuated by the adjacent liquid, unlike the generalized SAW (GSAW), which has particle displacement normal to the surface. This work investigates propagation and excitation properties of the SH-SAW and the shear horizontal bulk acoustic wave (SH-BAW) on single crystal KNbO3, Euler angles (0 degrees, 90 degrees, 0 degrees). Interdigital transducer (IDT) arrays are analyzed using boundary element method (BEM) techniques, addressing IDT properties such as: power partitioning between the SH-SAW and SH-BAW, SH-BAW radiation as a function of wave vector direction and radiation angle, and overall IDT impedance. The percentage of SH-SAW power to total input power is above 98% for IDTs containing 1.5 to 5.5 wavelengths of active electrodes with surrounding metalized regions. For nonmetalized regions outside the IDT, the ratio drops to between 1 and 2%, showing the importance of an energy trapping structure for efficient SH-SAW excitation and propagation along this orientation. Simulated and experimental IDT admittance results are compared, verifying the validity of the analysis performed. The reported measurements on the frequency variation with temperature indicate that the orientation considered is temperature compensated at about 8 degrees C. The surface of the SH-SAW devices fabricated have been loaded with deionized water and showed additional 1.6 dB transmission loss with respect to the unloaded surface, verifying the suitability of the pure SH-SAW mode on KNbO3 for liquid sensor applications.  相似文献   

7.
It was previously reported that a Rayleigh wave propagating on a zinc oxide film (ZnO)/ST-cut 35 degrees X propagation quartz substrate structure has the characteristics of an excellent temperature coefficient of frequency (TCF) and a large electromechanical coupling factor k(s). This substrate was applied to various intermediate-frequency (IF) stage filters. During the filter development, it was clarified that a spurious response due to the Love wave was generated. In this study, a new quartz substrate has been developed with a specific cut and propagation angle, that has the same values of the TCF and the coupling factor as the above-mentioned ones. In addition, it does not have the spurious response due to the Love wave. The combination of this specific-cut-angle quartz and ZnO film has been applied to IF filters for wideband code division multiple access (W-CDMA) and narrow-band CDMA (N-CDMA) systems. The insertion losses of their IF filters were 3-5 dB better and their TCF was superior (deltaf/f = 0.37 ppm/degrees C: one-third) compared with the conventional surface acoustic wave (SAW) filters.  相似文献   

8.
This paper presents the design, fabrication, and experimental results for a differential phase shift keying (DPSK) single SAW-based correlator on GaAs for direct sequence spread spectrum applications. The DPSK modulation format allows for noncoherent data demodulation; the SAW device correlator acts as the despreader. Unlike the conventional technique of using two parallel correlators and a one data bit delay element, this new system uses two inline correlators. When implemented on SAW devices, this in-line structure has the advantage of an inherent one data bit delay, lower insertion loss, and less signal distortion than the parallel structure. The DPSK correlator is fabricated on a {100} cut GaAs substrate with SAW propagation in the 110 direction, Using this cut, which is widely used in electronics, Rayleigh waves are generated with a piezoelectric coupling coefficient of the same order as ST-cut quartz. The piezoelectric semiconductor GaAs is of great interest because it is the only substrate that can be used to integrate SAW devices directly with electronics on the same chip, resulting in smaller packaging, reduction of packaging parasitics, lower cost, and greater system integration. This paper presents experimental results for SAW in-line correlator structures on GaAs along with their despreading system performances. Experimental measurements in both the time and frequency domains were performed and were found to be in good agreement with theoretical predictions.  相似文献   

9.
10.
A coupling-of-modes (COM) analysis is given for the film thickness dependence of a single-phase undirectional transducer (SPUDT), while the finite-element method (FEM) is employed for evaluating all the coefficients of COM equations. The relationship between the directivity and dispersion curves of the transducer is discussed. The theoretical analysis shows that when the electrode finger thickness increases through a threshold value, a mode conversion phenomenon occurs and the value of the reflection phase changes from the positive to the negative. This result predicts that the forward direction of a film thickness difference type SPUDT will move conversely when the electrode film thickness increases through the threshold thickness. A prototype step-type SPUDT, fabricated on 128 degrees Y-X LiNbO(3) substrate, showed a directivity of 10 dB/transducer at 481.5 MHz, and a low-loss surface acoustic wave (SAW) filter showed a minimum insertion loss of 3.8 dB.  相似文献   

11.
GHz-range low-loss transducers and filters are required for communication systems, especially mobile telephone communication systems. Many types of low insertion-loss transducers and filters utilizing the high electromechanical coupling coefficient (K2) materials such as LiNbO3 and LiTaO3 have been developed. Unfortunately, these materials have large temperature coefficients of the frequency (TCF). In this paper, SAW substrates with high coupling coefficients and low propagation attenuations and small temperature coefficient of frequency in the GHz-range are theoretically and experimentally investigated. The experimental results show very low propagation loss of 0.02 dB/λ 0 and larger K2 than those of the substrates of LiNbO3 and LiTaO3 at the TCF of below -5 ppm/°C at 1~2 GHz-range. The low-loss filter results using internal reflection types of IDT show the insertion loss of about 2.9 dB at 1 GHz and 4.9 dB at 2 GHz under the TCF's of 0 and +20 ppm/°C. These materials are applicable for devices at GHz-range because SiO2 thickness is very thin such as below 1 μm and the center frequency shift of the filter versus SiO2 thickness is very small  相似文献   

12.
Langatate (LGT, La/sub 3/Ga/sub 5.5/Ta/sub 0.5/O/sub 14/) is a recent addition to materials of the trigonal crystal class 32. In this paper SAW contour plots of the phase velocity (v/sub p/), the electromechanical coupling coefficient (K/sup 2/), the temperature coefficient of delay (TCD), and the power flow angle (PFA), are given showing the orientations in space in which high coupling is obtained, with the corresponding TCD, PFA, and vp characteristics for these orientations. This work reports experimental results on the SAW temperature fractional frequency variation (/spl Delta/f/fo) and the TCD for several LGT orientations on the plane with Euler angles: (0/spl deg/, 132/spl deg/, /spl psi/). The temperature behavior has been measured directly on SAW wafers from 10 to 200/spl deg/C, and the results are compared with numerical predictions using our recently measured temperature coefficients for LGT material constants. This research also has uncovered temperature compensated orientations, which we have experimentally verified with parabolic behavior, turnover temperatures in the 130 to 160/spl deg/C range, and /spl Delta/f/fo within 1000 ppm variation from 10 to 260/spl deg/C, appropriate for higher temperature device applications. Regarding the pseudo surface acoustic waves (PSAWs), results of calculations are presented for both the PSAW and the high velocity PSAW (HVPSAW) for some selected, rotated cuts. This study shows that propagation losses for the PSAWs of about 0.01 dB/wavelength, and phase velocities approximately 20% higher than that of the SAW, exist along specific orientations for the PSAW, thus showing the potential for somewhat higher frequency SAW device applications on this material, if required.  相似文献   

13.
A network model approach for analyzing arbitrarily oriented short-circuited SAW grating structures is extended to include interdigital transducers (IDTs) that are also arbitrarily oriented. The IDT structure is divided into cells, each modelled by a sequence of mismatched transmission lines consisting of a metallized and unmetallized region. The model includes: the impedance difference between metallized and free regions, the reflection coefficient at the metallization upstep, the reflection coefficient at the downstep for a counterpropagating wave, all deduced from the Datta-Hunsinger perturbation formula; the velocity difference between the free and metallized regions obtained using SAW propagation calculation software for arbitrarily oriented multilayers; and the energy storage susceptance at each finger discontinuity. Since only ordinary network elements are combined in accordance with the IDT geometry, this model permits good physical insight into the structure's characteristics and allows simple procedures for finding high directivity orientations.  相似文献   

14.
This paper presents low loss ring SAW filters on 49°YX, 64°YX, 128°YX LiNbO3 with reflective multistrip couplers (RMSCs). Using the RMSCs with 3 electrodes per λ (λ is the SAW wavelength at the center frequency) and the self-matching approach, when the static capacitance of the IDT is compensated by the acoustic radiation susceptance, the ring filters have shown very low insertion loss of 0.8-1 dB, 3-dB fractional bandwidth of 2-5% with very low ripple of 0.1 dB, stopband attenuation over 50 dB at 10-33% offset from the center frequency of 45 MHz. In a 50 ohm system, 148, 164, 172 MHz ring filters on 128°YX for low power transceivers have provided an insertion loss of 1 dB, 1 dB bandwidth of 1.8-2 MHz, stopband attenuation over 55 dB at ±25 MHz offset from the center frequency. Two cascaded filters at 164.5 MHz have shown insertion losses below 3 dB and stopband attenuation over 90 dB at ±25 MHz, offset from the center frequency. The chip size is 5×4×0.7 mm  相似文献   

15.
Scattering matrix approach to STW resonators   总被引:1,自引:0,他引:1  
The scattering matrix method was used for the analysis of surface transverse wave (STW) resonators on quartz. An expression for the transfer function of the resonators with different numbers of electrodes in the reflectors was derived. It was found that, for a proper ratio of these numbers, the spurious signal level below the resonance frequency can be lowered. The STW resonator for the frequency near 1090 MHz was designed, fabricated, and measured. By matching the measured and calculated transfer functions, the velocity, the electromechanical coupling coefficient, and the reflection coefficient of one aluminium strip of the STW on the 36°Y-cut quartz were determined. The insertion loss about 7 dB, loaded quality coefficient near 4200, and the spurious signal level about 5 dB lower compared with the resonance one were obtained for the resonator  相似文献   

16.
A promising perspective for surface acoustic wave (SAW) device applications at high temperature has been opened by langasite (LGS). The SAW properties of LGS in singly and doubly rotated cuts at 250 degrees C are investigated. Three noticeable regions for SAW-cut orientations and propagation directions at high temperature are put forward and are defined by Euler angles [0 degrees, 20 degrees --> 50 degrees, 35 degrees --> 45 degrees], [0 degrees, 85 degrees --> 110 degrees, 0 degrees --> 5 degrees], and [0 degrees, 138 degrees --> 145 degrees, 20 degrees --> 23 degrees], respectively. The first region includes zero or comparatively reduced temperature coefficient of delay (TCD) (<2 ppm) and smaller electromechanical coupling factor (K2) (0.2%-0.35%); the second one exhibits higher K2 (0.35%-0.45%) and moderate TCD (<5 ppm); and the highest K2 (>0.45%) and larger TCD (25-30 ppm) characterize the last region. For some typical orientations within the above-mentioned three regions, the temperature dependency of SAW characteristics (up to 1000 degrees C) is discussed. The second region [0 degrees, 85 degrees --> 110 degrees, 0 degrees --> 5 degrees], especially the orientation [0 degrees, 90 degrees, 0 degrees], has better comprehensive characteristics of SAW and is more suitable for high-temperature applications. Therefore, we should give a top priority to the orientation [0 degrees, 90 degrees, 0 degrees] in the design of SAW devices operating at high temperature. Comparison between published experimental results and numerical predictions based on LGS constants and their temperature coefficients available in the literature reveals that the theoretical results of TCD under 250 degrees C are in agreement with the experimental ones (the relative error of TCD is within 10%).  相似文献   

17.
In this paper, the perturbation method is used to study the velocity shift of surface acoustic waves (SAW) caused by surface pressure and temperature variations of piezoelectric substrates. Effects of pressures and temperatures on elastic, piezoelectric, and dielectric constants of piezoelectric substrates are fully considered as well as the initial stresses and boundary conditions. First, frequency pressure/temperature coefficients are introduced to reflect the relationship between the SAW resonant frequency and the pressure/temperature of the piezoelectric substrates. Second, delay pressure/temperature coefficients are introduced to reflect the relationship among the SAW delay time/phase and SAW delay line-based sensors' pressure and temperature. An objective function for performance evaluation of piezoelectric substrates is then defined in terms of their effective SAW coupling coefficients, power flow angles (PFA), acoustic propagation losses, and pressure and temperature coefficients. Finally, optimal selections of piezo-electric substrates and crystal cuts for SAW-based pressure, temperature, and pressure/temperature sensors are derived by calculating the corresponding objective function values among the range of X-cut, Y-cut, Z-cut, and rotated Y-cut quartz, lithium niobate, and lithium tantalate crystals in different propagation directions.  相似文献   

18.
The possibility of high frequency SAW device applications of longitudinal leaky surface waves (LLSW) on lithium tetraborate (Li2 B4O7; LBO) is investigated in this paper. An electrical equivalent circuit model (ECM) is extended in order to consider effects of bulk wave scattering for the LLSWs. The equivalent circuit parameters used in the extended ECM for designing the LLSW devices are directly determined from numerically calculated dispersion curves. For applications of the LLSW, high frequency SAW filters on LBO with the Euler angles (0°, 47.3°, 90°) are demonstrated. As examples of the high frequency devices, 1.5 GHz and 1.2 GHz SAW filters using the mode are designed by using the extended ECM, and fabricated by using conventional patterning processes. One is for the filter of the global positioning system (GPS), another is for the 1.2 GHz band data transmission radio system in Japan. As a result, low loss SAW filters can be obtained easily without submicron fabrication techniques by using the LLSWs on LBO. Furthermore, the frequency response calculated by the extended ECM are in a good agreement with the experiments  相似文献   

19.
Stress-sensitivity mapping for surface acoustic waves on quartz   总被引:1,自引:0,他引:1  
A model is presented, relating the velocity shifts of surface acoustic waves (SAW) to the six tensor components of quasistatic stresses. Stress sensitivity is then defined through six independent coefficients, whatever the origin of the stress (direct external forces, thermoelastic stresses) might be. These coefficients, depending on crystal anisotropy, are computed for different cut angles and propagation directions of quartz crystal, and represented as a contour-line mapping. The determination of SAW quartz cuts compensated for both planar isotropic stresses and first-order temperature effects make it possible to define a family of quartz cuts with potentially low stress and temperature sensitivities for oscillator applications.  相似文献   

20.
A software package that provides an interactive and graphical environment for surface acoustic wave (SAW) and plate-mode propagation studies in arbitrarily oriented anisotropic and piezoelectric multilayers is described. The software, which runs on an IBM PC with math coprocessor, is based on a transfer-matrix formulation for calculating the characteristics of SAW propagation in multilayers that was originally written for a mainframe computer. The menu-driven software will calculate wave velocities and field variable variations with depth for any desired propagation direction: the graphics capability provides a simultaneous display of slowness or velocity and of SAW Deltav/v coupling constant curves, and their corresponding field profiles in either polar or Cartesian coordinates, for propagation in a selected plane or as a function of one of the Euler angles. The program generates a numerical data file containing the calculated velocities and field profile data. Examples illustrating the usefulness of the software in the study of various SAW and plate structures are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号