首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In the last decade significant progress has been achieved in the development of measurement traceability for LNG inline metering technologies such as Coriolis and ultrasonic flow meters. In 2019, the world's first LNG research and calibration facility has been realised thus enabling calibration and performance testing of small and mid-scale LNG flow meters under realistic cryogenic conditions at a maximum flow rate of 200 m3/h and provisional mass flow measurement uncertainty of 0.30% (k = 2) using liquid nitrogen as the calibration fluid. This facility enabled, for the first time, an extensive test programme of LNG flow meters under cryogenic conditions to be carried out to achieve three main objectives; the first is to reduce the onsite flow measurement uncertainty for small and mid-scale LNG applications to meet a target measurement uncertainty of 0.50% (k = 2), the second is to systematically assess the impact of upstream flow disturbances and meter insulation on meter performance and the third is to assess transferability of meter calibrations with water at ambient conditions to cryogenic conditions. SI-traceable flow calibration results from testing six LNG flow meters (four Coriolis and two ultrasonic, see acknowledgment section) with water in a water calibration facility and liquid nitrogen (LIN) in the LNG research and calibration facility under various test conditions are fully described in this paper. Water and LIN calibration data were compared and it was observed that the influence of removing the meter insulation on mass flow rate measurement accuracy can be more significant (meter error > ±0.50%) than the influence of many typical upstream disturbances when the meter is preceded by a straight piping length equal to twenty pipe diameters (20D) with no additional flow conditioning devices, in particular for ultrasonic meters. The results indicate that the correction models used to transfer the water calibration to cryogenic conditions (using LIN) can potentially result in mass flow rate measurement errors below ±0.5%, however, the correction models are specific to the meter type and manufacturer. This work shows that the target measurement uncertainty of 0.50% can be achieved if the expanded standard error of the mean value measured by the meter is smaller than 0.40% (k = 2). It is planned to repeat these tests with LNG in order to compare the results with the LIN tests presented in this paper. This may reveal that testing with an explosion safe and environmentally friendly fluid such as LIN produces representative results for testing LNG flow meters.  相似文献   

2.
Oil and gas production industries use large (diameter > 0.8 m) ultrasonic flow meters (USMs) to measure exhaust gas from flare stacks, emissions from smokestacks, flow of natural gas, etc. Since most flow laboratories do not have compressors with sufficient flow capacity (>10 kg/s) to calibrate large flow meters, calibrations are performed using the blow-down method where flow is generated by discharging high pressure tanks, leading to significant flow transients. We used an array of critical flow venturis (CFVs) in a blow-down facility to calibrate a large (D = 89.5 cm) 8-path ultrasonic flow meter. The flow transients associated with the blow-down process caused large spatial and temporal variations in temperature that dominated (40%–67%) the uncertainty budget. Our uncertainty analysis accounts for transient-generated uncertainties and provides guidelines for improving blow-down calibrations of large flow meters.  相似文献   

3.
The calibration facility with the multi-nozzle calibrator was developed for the calibration of flow meters to be used with high-pressure, high-flow-rate hydrogen gas. The critical nozzles installed in the multi-nozzle calibrator were calibrated with traceability to the national standard. The relative standard uncertainty of the mass flow rates produced from the calibration facility is 0.09% when the flow rate is between 150 g/min and 550 g/min. In this study, the Coriolis flow meter was calibrated for a pressure range of 15–35 MPa. The relative standard uncertainty of the flow rates obtained from the Coriolis flow meter was 0.44% for the case of the worst fluctuations in the output of the flow meter; based on the calibration curve, this is 0.91%. The present result shows that there is a maximum 3% difference between the output of the Coriolis flow meter and the mass flow rates of the multi-nozzle calibrator, even though the Coriolis flow meter was calibrated using water. Therefore, for the development of a calibration facility that can calibrate a flow meter under the same conditions as those encountered in actual use, it will be important to develop a new flow meter.  相似文献   

4.
The present study outlines the efforts made to improve national primary water flow standards and calibration systems through design and development. The facility has been designed and developed in accordance with ISO 4185 standard in the flow range 0.03 m3/h to 650 m3/h to calibrate various types of flow meters up to DN200 (Nominal diameter) using 12 kg, 300 kg, 3000 kg, and 6000 kg weighing systems. In the flow range up to 530 m3/h, the expanded uncertainty in flow meter calibration in totalized mode is found to be ±0.01% to ±0.025% (k = 2), whereas it is ±(0.03–0.05) % (k = 2) up to DN200 size (test rigs) for mass flow rate (MFR) and volume flow rate (VFR) in the flow range 0.1 m3/h to 650 m3/h. The measurement uncertainty achieved is comparable to that of state-of-the-art water flow measurement capabilities available at numerous National Metrology Institutes (NMIs). Thus, the present designed and developed system at CSIR-National Physical Laboratory (CSIR-NPL) is a solution to maintain traceability to the users and industries.  相似文献   

5.
For calibration of a large capacity gas flow meter, a sonic nozzle bank may be used as a reference system. International standards (ISO9300:1990) allow installation of a single nozzle in a meter tube as a flow transfer standard. For multiple nozzles in a single tube, the effect of interference between sonic nozzles and the chamber wall must be measured to predict the discharge coefficient of a nozzle array from those of single nozzles. The interference effect between neighboring nozzles can be additional error sources in mass flow measurement. Sonic nozzles with three different throat diameters (d=4.3, 8.1, and 13.4 mm) were tested in a single meter tube in three geometrical arrangements. The mass flow rate was measured against a primary gas flow standard system. Three installation plates for sonic nozzles were made to vary the distance between nozzles and distance from the chamber wall. Discharge coefficients of the three individual nozzles were in agreement with the ISO recommended equation within ±0.2%. Discharge coefficients of the nozzle bank calculated from those of the individual sonic nozzle were the same as the direct measurements within ±0.098% at the 95% confidence level for all cases. For these experiments, the results were not influenced by the proximity of the tube wall or the interaction of the nozzles.  相似文献   

6.
A new test facility has been constructed for the National Metrology Institute of Japan (NMIJ) and the National Institute of Advanced Industrial Science and Technology (AIST) for calibration of feedwater flowmeters used in nuclear power stations at Reynolds numbers of up to 18 million. This very large Reynolds number is achieved in a 600 mm pipe at a flowrate of 3.33  m3/s (12,000  m3/h) and a water temperature of 70  °C. This calibration facility consists of a circulation loop with four pumps and four reference flowmeter sets, a prover system, a heating and cooling unit, and other components. The expanded uncertainty of this facility is 0.077%. The present paper describes, in detail, the new facility, the calibration method of the reference flowmeter, experiments for flow field, uncertainty estimation, and the results of an example calibration.  相似文献   

7.
National Metrology Institute of Japan (NMIJ) has established a high air speed standard facility and has been providing a calibration service since 2015. The facility has an air speed range of 40 m/s to 90 m/s with a relative expanded uncertainty (k = 2) of 0.63%. The purpose of this primary standard is mainly to contribute to the improvement of meteorological observation research and to the evaluation of flow field inside a turbo machine and around a high speed vehicle. The reference air speed is derived from the national primary gas flowrate standard of Japan. A conversion device from flowrate to air speed is installed in the test line of the closed-loop calibration facility. The reference air speed at the nozzle exit of the conversion device is obtained by comparing the integral of the air speed profiles and the reference volume flowrate. The total pressure tube used as a transfer standard is then calibrated against the reference air speed at the center of the nozzle exit. The Eiffel-type wind tunnel, which is a working standard for the daily calibration service, is calibrated using this total pressure tube. The present paper describes the calibration system, the traceability chain, and an uncertainty analysis using a validation method.  相似文献   

8.
A sonic nozzle is presently used as a reference flow-meter in the area of gas flow-rate measurement. The critical pressure ratio of the sonic nozzle is an important factor in maintaining its operating condition. ISO 9300 suggested that the critical ratio of a sonic nozzle should be a function of area ratio. In this study, 13 nozzles designed according to ISO 9300, with diffuser half angles of 2°–8° and throat diameters of 0.28 to 4.48 mm were tested. The testing result for the angles of 2°–6° are similar to that of ISO 9300. But the critical ratio for the nozzle of 8° decreases by 5.5% in comparison with ISO 9300. However, ISO 9300 does not predict the critical pressure ratio at Reynolds numbers lower than 105. To express the critical pressure ratio of sonic nozzles at low Reynolds numbers, it is found that the critical pressure ratio should be related as a function of Reynolds number rather than area ratio, as used by ISO 9300. A correlated relation of critical pressure ratios and low Reynolds numbers for small sonic nozzles is suggested in this investigation, with an uncertainty of ±3.2% at 95% confidence level.  相似文献   

9.
Four types of KOH-etched silicon sonic nozzles with throat dimensions of around 90 μm are examined to unveil their discharging characteristics for 6×102<Re<8×103. With a specially designed clamping holder, the silicon nozzles are able to sustain an upstream pressure of at least 13.8×105 Pa. The critical back pressure ratio for choking is found to be insensitive to Re, and the largest of the four types is about 0.36. The silicon nozzle takes about 20 s to reach a stable Cd value, that is, a thermal equilibrium with sonic flow, after the flow starts. The discharge coefficients obtained in five days during two months have a scattering of only 0.02%, signifying good long-term stability.  相似文献   

10.
Ultrasonic water meters offer a number of advantages such as non-intrusiveness, low pressure loss, high accuracy, low power consumption and long service life, which make them a viable option for the next generation of smart water meters. However, the existing ultrasonic water meters have difficulties in balancing the range and accuracy. Therefore, in order to address this issue, this study proposes a novel ultrasonic water meter featured with high-precision and wide-range. First of all, the flow measurement principle of the ultrasonic time difference method is investigated, and a flow measurement model that includes the parameter of radial transit time (TD) is developed. The ultrasonic water meter is designed based on comprehensive consideration of the three aspects of hardware, software and algorithms, and a series of experiments are conducted to verify the performance of the water meter. Eighteen verification test points with the flow range of 0.015–4.509 m3/h are carried out, the results of which suggest that the accuracy level of the ultrasonic water meter reaches 0.5, with the repeatability of 0.09%, and the range ratio of 300:1, indicating the achievement of the design goal of high-precision and wide-range.  相似文献   

11.
The most common method to predict the gas and liquid flow rates in a wet gas flow simultaneously is to use dual pressure drops (dual-DPs) from two or even one single DP meter. In this paper, the metering mechanism of applying dual-DPs were overviewed. To fully understand the response of DP meters to wet gas flows, the pressure drops of wet gas flow with ultra-low liquid loading through three typical DP meters were experimentally investigated, including an orifice plate meter, a cone meter and a Venturi meter. The equivalent diameter ratio is 0.45. The experimental fluids are air and tap water. The pressure is in the range of 0.1–0.3 MPa and the Lockhart-Martinelli parameter (XLM) is less than approximately 0.02. The results show that the upstream-throat pressure drop, the downstream-throat pressure drop and the permanent pressure loss of individual DP meters have unique response to liquid loading. The upstream-throat pressure drop of the orifice plate meter decreases at first and then increases as the liquid loading increases, while that of the cone meter and the Venturi meter increase monotonically. The non-monotonicity of the pressure drop for the orifice plate meter can be attributed to the flow modulation of trace liquid. The downstream-throat pressure drops of all the three test sections decrease at first and then increase. The reason is that the liquid presence in a gas flow increases the downstream friction and vortex dissipation. The permanent pressure loss of the orifice plate meter also shows non-monotonicity. To avoid non-monotonicity, the pressure loss ratio is introduced, which is defined as the ratio of the permanent pressure loss to the upstream-throat pressure drop. Results show that the pressure loss ratio of the Venturi meter has the highest sensitivity to the liquid loading.  相似文献   

12.
Within the framework of a research project regarding investigations on a high-pressure Coriolis mass flow meter (CMF) a portable flow test rig for traceable calibration measurements of the flow rate (mass - and volume flow) in a range of 5 g min−1 to 500 g min−1 and in a pressure range of 0.1 MPa to 85 MPa was developed. The measurement principle of the flow test rig is based on the gravimetrical measuring procedure with flying-start-and-stop operating mode. Particular attention has been paid to the challenges of temperature stability during the measurements since the temperature has a direct influence on the viscosity and flow rate of the test medium. For that reason the pipes on the high-pressure side are double-walled and insulated and the device under test (DUT) has an enclosure with a separate temperature control. From the analysis of the first measurement with tap water at a temperature of 20 °C and a pressure of 82.7 MPa an extensive uncertainty analysis has been carried out. It was found that the diverter (mainly due to its asymmetric behaviour) is the largest influence factor on the total uncertainty budget. After a number of improvements, especially concerning the diverter, the flow test rig has currently an expanded measurement uncertainty of around 1.0% in the lower flow rate range (25 g min−1) and 0.25% in the higher flow rate range (400 g min−1) for the measurement of mass flow. Additional calibration measurements with the new, redesigned flow test rig and highly viscous base oils also indicated a good agreement with the theoretical behaviour of the flow meter according to the manufacturers׳ specifications with water as test medium. Further improvements are envisaged in the future in order to focus also on other areas of interest.  相似文献   

13.
A new mass-time primary standard for high pressure natural gas, which is based on electromagnetic balance and hydraulic fast-acting valves, was set up at the beginning of 2017 in Chengdu, China. The full load of the electromagnetic balance is 3 tons and the measurement uncertainty of mass is better than 1.0g(k = 2). The opening and closing time of the hydraulic fast-acting valves can achieve 33 ms±3 ms.The operation pressure and flowrate range of the facility is (4–60)bar.a and (5–410)m3/h respectively. In accordance with the preliminary tests, the estimate uncertainty of sonic nozzles calibration is between 0.10% and 0.12%(k = 2). The operation principle, testing results and the uncertainty evaluation are presented in the paper as well as some improving ideas.  相似文献   

14.
The critical flow nozzle is widely used to calibrate flowmeters in gas flow measurement. Its use requires the critical flow factor, C*, a parameter dependent upon the thermophysical properties of the gas at the nozzle throat, and the upstream temperature and pressure. This paper presents C* values for four calibration gases (air, argon, nitrogen and methane), calculated from the most recent reference quality equations of state, over a wider range of temperature and pressure than previously available, 200–600 K and up to 20 MPa. In addition, a new empirical equation has been developed to represent the calculated values accurately, thus eliminating the need for complex calculations or interpolations from tables.  相似文献   

15.
The paper describes the design, measurement results and uncertainty analyses of the hydraulic driven piston-prover system which has been in operation at VSL since 2008. The 12-meter long, 0.6 m bore piston-prover is used for the realization of Reference Values for Gas-Volume at pressures between 1 and 65 bar(a) at several gases. The principle is based on the displacement of a piston acting as a Gas–Oil separator. The standard has a flow-rate range from 5 to 230 m3/h. The system is designed to calibrate reference meters. The Calibration and Measurement Capability (CMC) of the system is proven to be smaller than 0.1% (k=2). The paper also explains the coherence between the Gas–Oil piston-prover and other traceability generators and ‘flow rate bootstrapper systems’.  相似文献   

16.
In order to improve the measurement accuracy and efficiency of sonic nozzles (SNs) in laminar boundary layer, a correlation model for theoretical discharge coefficient of sonic nozzle taking into account the viscous effects on the boundary layer along the nozzle wall (Cd,th,1), and the multi-dimensional characteristic effect of the core region (Cd,th,2) was proposed. The theoretical discharge coefficient is related to the measurement of geometric parameters, such as the throat diameter, d, and curvature radius, Rc. The detailed geometric measurements of sonic nozzle by 3D coordinate measuring machine were conducted. Then, the evaluation procedures of parameters d and Rc including roundness and waviness profile for designed SNs of d = 7.453 mm and d = 1.919 mm were presented in detail. The effect of waviness profile on the discharge coefficient and boundary layer transient was investigated. It indicated that waviness effect is quite complex. Finally, the validation of the theoretical calculation model of discharge coefficient was verified by the experimental data of National Institute of Metrology (NIM) and National Metrology Institute of Japan (NMIJ) based on the accurate measurements of the geometric parameters. The result showed that the consistency between the Cd,exp and the Cd,th is better than 0.11% when the effect of the heat transfer was considered within the range of Re= (7.33 × 104–1.26 × 106).  相似文献   

17.
18.
The performance of four Coriolis flow meters designed for use in hydrogen refuelling stations was evaluated with air and nitrogen by three members of the MetroHyVe JRP consortium; NEL, METAS and CESAME EXADEBIT.A wide range of conditions were tested overall, with gas flow rates ranging from (0.05–2) kg/min and pressures ranging from (20–86) bar. The majority of tests were conducted at nominal pressures of either 20 bar or 40 bar, in order to match the density of hydrogen at 350 bar and 20 °C or 700 bar and −40 °C. For the conditions tested, pressure did not have a noticeable influence on meter performance.When the flow meters were operated at ambient temperatures and within the manufacturer's recommended flow rate ranges, errors were generally within ±1%. Errors within ±0.5% were achievable for the medium to high flow rates.The influence of temperature on meter performance was also studied, with testing under both stable and transient conditions and temperatures as low as −40 °C.When the tested flow meters were allowed sufficient time to reach thermal equilibrium with the incoming gas, temperature effects were limited. The magnitude and spread of errors increased, but errors within ±2% were achievable at moderate to high flow rates. Conversely, errors as high as 15% were observed in tests where logging began before temperatures stabilised and there was a large difference in temperature between the flow meter and the incoming gas.One of the flow meters tested with nitrogen was later installed in a hydrogen refuelling station and tested against the METAS Hydrogen Field Test Standard (HFTS). Under these conditions, errors ranged from 0.47% to 0.91%. Testing with nitrogen at the same flow rates yielded errors of −0.61% to −0.82%.  相似文献   

19.
Four types of pyramidal sonic nozzles made of silicon crystal were studied experimentally. The throat sizes varied from 38 to 140 μm for type A and D nozzles and from 75 to 188 μm for type B and C nozzles. For each of the nozzle types, the results show that the discharge coefficient is proportional to the throat size, and the critical back pressure ratio for choking is insensitive to Reynolds’ number. In parallel, the flow field of a type B nozzle was investigated by numerical simulation. The effect of heat flux coming from the nozzle body was examined and the flow patterns obtained from Spalart-Allmaras and standard kω turbulence models were compared. The simulation results indicate the heat flux does not noticeably change the velocity field and discharge coefficient. Also, the flow downstream of the nozzle throat develops into an under-expanded supersonic jet in which expansion and oblique shock waves appear alternately.  相似文献   

20.
Differential pressure based flow meters generally consist of a flow restriction element which generates a differential pressure and a pressure transducer, externally piped to the restriction, which measures the flow related differential pressure. The smart-orifice mini head meter presented takes advantage of silicon technology by incorporating a differential pressure microsensor. In contrast to conventional head meters, it represents a single compact and economic device for general flow meter applications, in particular where small size is of concern. Computational fluid dynamics analyses were applied to develop a non-standard orifice design and prototypes of the smart-orifice were fabricated. The performance of the mini head meter in water flow measurement was determined in a computer supported test bench facility. It was compared to the results predicted by the simulation, as well as to a conventional head meter arrangement with externally mounted pressure transducer, including measurements with water at elevated temperature and different absolute line pressures. The results are very promising and verify the competitiveness of the smart-orifice as a mini head meter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号