首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, an exergetic optimization of flat plate solar collectors is developed to determine the optimal performance and design parameters of these solar to thermal energy conversion systems. A detailed energy and exergy analysis is carried out for evaluating the thermal and optical performance, exergy flows and losses as well as exergetic efficiency for a typical flat plate solar collector under given operating conditions. In this analysis, the following geometric and operating parameters are considered as variables: the absorber plate area, dimensions of solar collector, pipes' diameter, mass flow rate, fluid inlet, outlet temperature, the overall loss coefficient, etc. A simulation program is developed for the thermal and exergetic calculations. The results of this computational program are in good agreement with the experimental measurements noted in the previous literature. Finally, the exergetic optimization has been carried out under given design and operating conditions and the optimum values of the mass flow rate, the absorber plate area and the maximum exergy efficiency have been found. Thus, more accurate results and beneficial applications of the exergy method in the design of solar collectors have been obtained.  相似文献   

2.
The present study aims to establish the optimal performance parameters for the maximum exergy delivery during the collection of solar energy in a flat-plate solar air heater. The procedure to determine optimum aspect ratio (length to width ratio of the absorber plate) and optimum duct depth (the distance between the absorber and the bottom plates) for maximum exergy delivery has been developed. It is known that heat energy gain and blower work increase monotonically with mass flow rate, while the temperature of air decreases; therefore, it is desirable to incorporate the quality of heat energy collected and the blower work. First it is proved analytically that the optimum exergy output, neglecting blower work, and the corresponding mass flow rate depend on the inlet temperature of air. The energy and exergy output rates of the solar air heater were evaluated for various values of collector aspect ratio (AR) of the collector, mass flow rate per unit area of the collector plate (G) and solar air heater duct depth (H). Results have been presented to discuss the effects of G, AR and H on the energy and exergy output rates of the solar air heater. The energy output rate increases with G and AR, and decreases with H and the inlet temperature of air. The exergy-based evaluation criterion shows that performance is not a monotonically increasing function of G and AR, and a decreasing function of H and inlet temperature of air. Based on the exergy output rate, it is found that there must be an optimum inlet temperature of air and a corresponding optimum G for any value of AR and H. For values of G lesser than optimal corresponding to inlet temperature of air equals to ambient, higher exergy output rate is achieved for the low value of duct depth and high AR in the range of parameters investigated. If G is high, for an application requiring less temperature increase, then either low AR or high H would give higher exergy output rate.  相似文献   

3.
Parabolic dish solar collector system has capability to gain higher efficiency by converting solar radiations to thermal heat due to its higher concentration ratio. This paper examines the exergo-economic analysis, net work and hydrogen production rate by integrating the parabolic dish solar collector with two high temperature supercritical carbon dioxide (s-CO2) recompression Brayton cycles. Pressurized water (H2O) is used as a working fluid in the solar collector loop. The various input parameters (direct normal irradiance, ambient temperature, inlet temperature, turbine inlet temperature and minimum cycle temperature) are varied to analyze the effect on net power output, hydrogen production rate, integrated system energetic and exergetic efficiencies. The simulations has been carried out using engineering equation solver (EES). The outputs demonstrate that the net power output of the integrated reheat recompression s-CO2 Brayton system is 3177 kW, whereas, without reheat integrated system has almost 1800 kW net work output. The overall energetic and exergetic efficiencies of former system is 30.37% and 32.7%, respectively and almost 11.6% higher than the later system. The hydrogen production rate of the solarized reheat and without reheat integrated systems is 0.0125 g/sec and 0.007 g/sec, accordingly and it increases with rise in direct normal irradiance and ambient temperature. The receiver has the highest exergy destruction rate (nearly 44%) among the system components. The levelized electricity cost (LEC) of 0.2831 $/kWh with payback period of 9.5 years has proved the economic feasibility of the system design. The increase in plant life from 10 to 32 years with 8% interest rate will decrease the LEC from (0.434-0.266) $/kWh. Recuperators have more potential for improvement and their cost rate of exergy is higher as compared to the other components.  相似文献   

4.
The present study investigates the performance of a multi-generation plant by integrating a parabolic dish solar collector to a steam turbine and absorption chiller producing electricity and process heat and cooling. Thermodynamic modeling of the proposed solar dish integrated multi-generation plant is conducted using engineering equation solver to investigate the effect of certain operating parameters on the performance of the integrated system. The performance of the solar integrated plant is evaluated and compared using three different heat transfer fluids, namely, supercritical carbon dioxide, pressurized water, and Therminol-VPI. The useful heat gain by collector is utilized to drive a Rankine cycle to evaluate the network output, rate of process heat, cooling capacity, overall energetic, and exergetic efficiencies as well as coefficient of performance. The results show that water is an efficient working fluid up to a temperature of 550 K, while Therminol-VPI performs better at elevated temperatures (630 K and above). Higher integrated efficiencies are linked with the lower inlet temperature and higher mass flow rates. The integrated system using pressurized water as a heat transfer fluid is capable of producing 1278 and 832 kW of power output and process heat, respectively, from input source of almost 6121 kW indicating overall energy and exergy efficiencies of 34.5% and 37.10%, respectively. Furthermore, multi-generation plant is evaluated to assess the exergy destruction rate and steam boiler is witnessed to have the major contribution of this loss followed by the turbine. The exergo-environmental analysis is carried out to evaluate the impact of the system on its surroundings. Exergo-environmental impact index, impact factor, impact coefficient, and impact improvement are evaluated against increase in the inlet temperature of the collector. The single-effect absorption cycle is observed to have the energetic and exergetic coefficient of performances of 0.86 and 0.422, for sCO2 operating system, respectively, with a cooling load of 228 kW.  相似文献   

5.
A.Kerim Kar 《Applied Energy》1985,21(4):301-314
Efficiency and optimum operation of flat-plate solar collectors are investigated in terms of exergy delivery of the collector. Various exergy efficiencies are defined and output exergy efficiency is used to determine the optimum flow rate of a typical collector allowing for the pressure drop in tubes. The operation of a collector is investigated for optimum flow rate and various constant inlet temperatures using the output exergy efficiency and thermal efficiency together.  相似文献   

6.
The exergetic efficiency of heat receiver in solar thermal power system is optimized by considering the heat loss outside the receiver and fluid viscous dissipation inside the receiver. The physical models of heat loss and pumping power consumption for solar heat receiver are first proposed, and associated exergetic efficiency is further induced. As the flow velocity rises, the pumping power consumption and heat absorption efficiency significantly rises, and the maximum absorption efficiency and optimal incident energy flux also increase. Along the flow direction of solar receiver, the exergy flux increment and the flow exergy loss almost linearly increase, while the exergetic efficiency varies very slowly at high flow velocity. According to the exergetic efficiency loss from flow viscou’s dissipation, the exergetic efficiency of solar heat receiver will first increase and then decrease with the flow velocity. Because of the coupling effects of heat absorption efficiency and exergetic efficiency from fluid internal energy, the exergetic efficiency of solar heat receiver will approach to the maximum at proper inlet temperature. As a result, the exergetic efficiency of solar heat receiver will reach the maximum at optimal inlet temperature, incident energy flux and flow velocity.  相似文献   

7.
针对天津市槽式太阳能集热系统性能测试平台,对不同太阳辐射强度、入口流体温度以及不同工质流量状况下集热效率和集热管压降变化规律进行实验测试,通过测试数据对槽式太阳能集热器热性能进行分析.试验结果表明:在天津地区槽式太阳能集热器集热效率可以达到66.1%;太阳辐射强度的增强,会提高集热效率,并且集热器进出口的压降会随之降低...  相似文献   

8.
Today, to preserve fossil resources, mankind has to search for new ways to respond to its ever-increasing energy needs. In this study, a hybrid system of energy and the use of a parabolic trough solar collector to attract solar radiation was investigated to produce clean electricity, cooling, and hydrogen from thermodynamic and economic aspects. The designed system consisted of a parabolic trough solar collector, organic Rankine cycle, lithium-bromide absorption refrigeration cycle, and proton exchange membrane electrolysis system. The evaporator input temperature, turbine inlet temperature, solar radiation intensity, mass flow rate of collector and parabolic trough collector surface area were set as decision variables and the effect of these parameters on system performance and system exergy loss were investigated. The objective functions of this research were exergy efficiency and cost rate. In order to optimize this system, multi-objective particle swarm optimization algorithm was employed. Optimization results with particle swarm optimization indicated that the best rate of exergy efficiency is 3.12% and the system cost rate is 16.367 US$ per hour, at the same time. The system is capable of producing 15.385 kW power, 0.189 kg/day hydrogen and 56.145 kW cooling in its optimum condition. The results of sensitivity analysis showed that increasing mass flow rate at the collector, temperature at the evaporator inlet, and temperature at the turbine inlet have positive effect on the performance of the proposed system.  相似文献   

9.
设计并搭建了CPC低倍聚光太阳能PV/T单通道空气系统实验台,对不同工作环境下聚光PV/T系统的热电性能进行了实验研究。实验研究结果显示:在聚光条件下,系统的各表面温度随光照强度的增加而升高,随下部通道入口空气流速的增加而降低。聚光PV/T系统的最大输出功率可达到60W,比对应相同电池面积平板系统最大输出功率高20W。聚光PV/T系统的各效率随光照强度增加而增大,系统的最大电效率为11%,最大热效率为70%,最大火用效率为16%,比单纯发电时最大火用效率提高约5%。实验获得了一批新的有价值的实验数据,为聚光太阳能光伏光热系统的进一步研究提供了依据。  相似文献   

10.
The basic physical model of solar receiver pipe with solar selective coating is established, and associated heat transfer and exergetic performances are analyzed and optimized. Because of the heat losses of natural convection and infrared radiation, the energy absorption efficiency has a maximum at optimal incident energy flux. As the pipe radius decreases or flow velocity rises, the wall temperature drops for higher heat transfer coefficient, while the heat absorption efficiency increases. Along the flow direction, the heat absorption efficiency almost linearly decreases, while the exergetic efficiency will first increase and then decrease. As the inlet temperature rises, the heat absorption efficiency of the solar receiver pipe decreases, while the exergetic efficiency of absorbed energy obviously increases, so the exergetic efficiency of incident energy will reach maximum at the optimal inlet temperature. Additionally, the maximum exergetic efficiency of incident energy and optimal inlet temperature both increase with flow velocity.  相似文献   

11.
以能源平均成本和动态投资回收期为经济性指标,对采用平板集热器、真空管集热器、复合抛物面集热器和槽式集热器驱动的太阳能单效溴化锂吸收式制冷系统进行了对比分析,同时以?效率和动态投资回收期为目标对优选的太阳能制冷系统进行了多目标优化。结果表明:采用真空管集热器的太阳能制冷系统的能源平均成本最低及动态投资回收期最短;发生器热水进口温度存在最优值使得系统?效率最高,能源平均成本最低;增加系统装机容量可有效降低系统的能源平均成本并且缩短投资回收期;太阳辐照强度越大,太阳能制冷系统的能源平均成本越低及投资回收期越短。此外,多目标优化结果表明发生器热水进口温度存在最优值可使得综合目标函数取得最小值。  相似文献   

12.
In this paper, an exergetic optimization has been developed to determine the optimal performance and design parameters of a solar photovoltaic thermal (PV/T) air collector. A detailed energy and exergy analysis has been carried out to calculate the thermal and electrical parameters, exergy components, and exergy efficiency of a typical PV/T air collector. The thermal and electrical parameters of a PV/T air collector include solar cell temperature, back surface temperature, outlet air temperature, open‐circuit voltage, short‐circuit current, maximum power point voltage, maximum power point current, etc. An improved electrical model has been used to estimate the electrical parameters of a PV/T air collector. Furthermore, a new equation for the exergy efficiency of a PV/T air collector has been derived in terms of design and climatic parameters. A computer simulation program has been also developed to calculate the thermal and electrical parameters of a PV/T air collector. The results of numerical simulation are in good agreement with the experimental measurements noted in the previous literature. Moreover, the simulation results obtained in this paper are more precise than the one given by the previous literature, and the new exergy efficiency obtained in this paper is in good agreement with the one given by the previous literature. Finally, exergetic optimization has been carried out under given climatic, operating, and design parameters. The optimized values of inlet air velocity, duct length, and the maximum exergy efficiency have been found. Parametric studies have been also carried out. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The optimal flat-plate collector mass flow rate is determined by maximizing the exergy (available energy) delivery of the collector as the objective function. Collector and storage dynamics are neglected. Although the case where the pumping power loss is ignored results in bang-bang control, the case where this loss is included in the exergy equation results, after some assumptions, in an optimal mass flow rate that is a function of collector parameters, inlet and ambient temperatures and solar heat gain. Daily performance of a typical flat-plate solar collector with optimum mass flow rate is compared with the performance of the same collector using the mass flow rate obtained by maximizing the difference between the collected thermal energy and the required pumping power.  相似文献   

14.
建立太阳能驱动的中空纤维膜液体除湿系统的分析模型,对系统各部件进行分析,分析空气、冷水进口参数和溶液流量对系统性能的影响.结果显示:1)影响系统效率较大的因素是空气进口含湿量、空气流量、冷水温度和冷水流量;2)整个系统中太阳能集热器部件的损最大,可见提高太阳能集热器的性能是提高系统效率的关键.  相似文献   

15.
In this paper, exergy modeling is used to assess the exergetic performance of a novel trigeneration system using parabolic trough solar collectors (PTSC) and an organic Rankine cycle (ORC). Four cases are considered: electrical-power, cooling-cogeneration, heating-cogeneration, and trigeneration. In this trigeneration system a single-effect absorption chiller is utilized to provide the necessary cooling energy and a heat exchanger is utilized to provide the necessary heating energy. The trigeneration system considered is examined using three modes of operation. They are: solar mode during the low-solar radiation time of the day, solar and storage mode during the high-solar radiation time of the day, and storage mode during night time. The storage mode is operated through the heat collected in a thermal storage tank during the solar and storage mode. The exergy efficiencies and exergy destruction rates are examined under the variation of the ORC evaporator pinch point temperature, ORC pump inlet temperature, and turbine inlet pressure. This study reveals that the maximum electrical-exergy efficiency for the solar mode is 7%, for the solar and storage mode is 3.5%, and for the storage mode is 3%. Alternatively, when trigeneration is used, the exergy efficiency increases noticeably. The maximum trigeneration-exergy efficiency for the solar mode is 20%, for solar and storage mode is 8%, and for the storage mode is 7%. Moreover, this study shows that the main sources of exergy destruction rate are the solar collectors and ORC evaporators. Therefore, careful selection and design of these two components are essential to reduce the exergy destructed by them and, thus, increase the exergy efficiencies of the system.  相似文献   

16.
Combined cycle configuration has the ability to use the waste heat from the gas turbine exhaust gas using the heat recovery steam generator for the bottoming steam cycle. In the current study, a natural gas‐fired combined cycle with indirectly fired heating for additional work output is investigated for configurations with and without reheat combustor (RHC) in the gas turbine. The mass flow rate of coal for the indirect‐firing mode in circulating fluidized bed (CFB) combustor is estimated based on fixed natural gas input for the gas turbine combustion chamber (GTCC). The effects of pressure ratio, gas turbine inlet temperature, inlet temperatures to the air compressor and to the GTCC on the overall cycle performance of the combined cycle configuration are analysed. The combined cycle efficiency increases with pressure ratio up to the optimum value. Both efficiency and net work output for the combined cycle increase with gas turbine inlet temperature. The efficiency decreases with increase in the air compressor inlet temperature. The indirect firing of coal shows reduced use with increase in the turbine inlet temperature due to increase in the use of natural gas. There is little variation in the efficiency with increase in GTCC inlet temperature resulting in increased use of coal. The combined cycle having the two‐stage gas turbine with RHC has significantly higher efficiency and net work output compared with the cycle without RHC. The exergetic efficiency also increases with increase in the gas turbine inlet temperature. The exergy destruction is highest for the CFB combustor followed by the GTCC. The analyses show that the indirectly fired mode of the combined cycle offers better performance and opportunities for additional net work output by using solid fuels (coal in this case). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
An optimum exergy efficiency is derived for flat-plate solar collectors as a ratio of exergy delivery of the collector to the maximum output exergy obtainable. It is a function of the optimum mass flow rate through the collector, which itself is obtained through an optimization of the exergy delivery of the collector.  相似文献   

18.
This paper investigates the performance of a high temperature Polymer Electrolyte Membrane (PEM) electrolyzer integrated with concentrating solar power (CSP) plant and thermal energy storage (TES) to produce hydrogen and electricity, concurrently. A finite-time-thermodynamic analysis is conducted to evaluate the performance of a PEM system integrated with a Rankine cycle based on the concept of exergy. The effects of solar intensity, electrolyzer current density and working temperature on the performance of the overall system are identified. A TES subsystem is utilized to facilitate continuous generation of hydrogen and electricity. The hydrogen and electricity generation efficiency and the exergy efficiency of the integrated system are 20.1% and 41.25%, respectively. When TES system supplies the required energy, the overall energy and exergy efficiencies decrease to 23.1% and 45%, respectively. The integration of PEM electrolyzer enhances the exergy efficiency of the Rankine cycle, considerably. However, it causes almost 5% exergy destruction in the integrated system due to conversion of electrical energy to hydrogen energy. Also, it is concluded that increase of working pressure and membrane thickness leads to higher cell voltage and lower electrolyzer efficiency. The results indicate that the integrated system is a promising technology to enhance the performance of concentrating solar power plants.  相似文献   

19.
文章设计了新型非晶硅太阳能PV/T空气集热器,该空气集热器能够解决传统太阳能PV/T热水器在高温波动情况下,晶硅电池热应力大的问题,同时避免了冬季管道发生霜冻的现象。文章通过实验对比,分析了非晶硅太阳能PV/T空气集热器、单独非晶硅光伏电池和传统太阳能空气集热器的能量效率和[火用]效率的差异。分析结果表明:非晶硅太阳能PV/T空气集热器的平均热效率为45.70%,比传统太阳能空气集热器的平均热效率降低了约25.88%;当空气质量流量增大至0.048 kg/s时,非晶硅太阳能PV/T空气集热器中的非晶硅光伏电池的平均电效率高于单独非晶硅光伏电池,它们的平均电效率分别为4.70%,4.54%;非晶硅太阳能PV/T空气集热器的总[火用]效率高于传统太阳能空气集热器的热[火用]效率和单独非晶硅光伏电池的电[火用]效率,非晶硅太阳能PV/T空气集热器总[火用]效率最大值为7.14%。文章的分析结果为非晶硅太阳能PV/T空气集热器的推广提供了参考。  相似文献   

20.
In this paper, a combined power plant based on the dish collector and biomass gasifier has been designed to produce liquefied hydrogen and beneficial outputs. The proposed solar and biomass energy based combined power system consists of seven different subplants, such as solar power process, biomass gasification plant, gas turbine cycle, hydrogen generation and liquefaction system, Kalina cycle, organic Rankine cycle, and single-effect absorption plant with ejector. The main useful outputs from the combined plant include power, liquid hydrogen, heating-cooling, and hot water. To evaluate the efficiency of integrated solar energy plant, energetic and exergetic effectiveness of both the whole plant and the sub-plants are performed. For this solar and biomass gasification based combined plant, the generation rates for useful outputs covering the total electricity, cooling, heating and hydrogen, and hot water are obtained as nearly 3.9 MW, 6584 kW, 4206 kW, and 0.087 kg/s in the base design situations. The energy and exergy performances of the whole system are calculated as 51.93% and 47.14%. Also, the functional exergy of the whole system is calculated as 9.18% for the base working parameters. In addition to calculating thermodynamic efficiencies, a parametric plant is conducted to examine the impacts of reference temperature, solar radiation intensity, gasifier temperature, combustion temperature, compression ratio of Brayton cycle, inlet temperature of separator 2, organic Rankine cycle turbine and pump input temperature, and gas turbine input temperature on the combined plant performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号