首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将折流式旋转床分成若干液体流动区,计算流动区内动、静圈壁上液膜及动、静圈之间液滴的运动时间,在此基础上建立折流式旋转床持液量模型. 以空气-水为物系,在直径300 mm、高51 mm的折流式旋转床中进行实验,分别测得不通和通空气时转子的持液量,用实验数据拟合出持液量模型参数. 结果表明,转子持液量随液量和气量增加而增加,随转子转速增加而减小,高转速下气量对持液量的影响明显减弱. 折流式旋转床不通气持液量为2.35%~3.68%,是普通丝网旋转填料床不通气持液量的1.32~2.06倍.  相似文献   

2.
用不同浓度的NaOH溶液吸收CO2,分别测定新型复合转子旋转床的气液有效比表面积和液相传质系数,考察了液量、气量和转速的影响. 结果表明,新型复合转子旋转床的有效比表面积和液相传质系数均随液量、气量和转速增大而增大. 在相同操作条件下,与折流式旋转床相比,新型复合转子旋转床转子的有效比表面积增大7%~159%,液相传质系数降低7.7%~18.2%,最终液相体积传质系数增大4%~132%.  相似文献   

3.
折流式超重力旋转床是一种新型高效的气液传质设备。液泛和气相压降是超重力旋转床流体力学的重要特征。实验以空气-水为物系,对转子直径为288mm,高度为55mm的折流式旋转床进行了气相压降和液泛实验。实验表明:随着转速和液流量的增加,液泛气速减小,折流式旋转床更容易液泛。气相压降随气量、转速、液量的增加而增大,随气量和转速增大的趋势比较明显,随液量增大的趋势比较缓慢。  相似文献   

4.
折流式旋转床是一种新型的同心圈式超重力设备,电机功率消耗是折流式旋转床设计时需要考虑的重要因素.本文对折流式旋转床的有效功耗进行了初步的实验研究,并提出了一种新的有效功耗计算方法,为旋转设备功耗研究和折流式旋转床工业应用提供了一定基础.折流式旋转床有效功耗可以分成两部分,即分散液体功耗和加速液体功耗.通过理论分析,得到了折流式旋转床有效功耗的计算模型.实验以水为介质,在不同液量和转速下测得有效功耗.结果表明,转速一定时,有效功耗随着液量的增加近似呈线性增加,且转速越大,有效功耗随液量增加越快.通过对实验数据的回归,得到单个同心圈转子有效功耗的计算模型,实验值与回归计算值相对偏差基本在20%以内.通过对包含4个同心圈转子的折流式旋转床有效功耗的验证结果可知,4个动圈有效功耗计算值的总和比实验测量值高20%左右,对折流式旋转床的工程放大有一定意义.  相似文献   

5.
采用CFD方法对折流式旋转床气液两相流动及压降进行数值模拟,建立了二维物理模型,研究了折流式旋转床转速、动静圈对数、进气量对气相压降和气相流场的影响,并用实验数据对模型进行验证. 结果表明,计算与实验相对误差在15%以内. 气相压降随进气量和动静圈对数增加而显著增大;转速增加,压降增大,但不明显,压降主要集中在转子内部,占总压降的88%~97%,其中转子压降的55%~73%由拐弯处的摩擦阻力引起;气体在静圈下隙存在回流,在动圈上隙气体流动缓慢,存在流动死区,气速主要以切向速度为主(占80%以上),峰值位于转子外缘,并与气体入口存在较大速度梯度,径向和轴向速度所占比例较小,且因位置不同而不同. 速度变化和压降的变化是转速、进气量和动静圈数等共同作用的结果.  相似文献   

6.
介绍了一种在线测定旋转填料床持液量的方法和装置,填料持液量以闭合电路中欧姆电阻的阻值体现。考察了不同液体流量、转子转速、液体黏度和气体流量时错流旋转填料床的持液量。结果表明,持液量随液体流量和黏度的增大而增大,随转速增大而减小,气体流量影响不明显。与传统填料塔比较,旋转填料床负荷小、相间接触面积大,强化了气液传质过程。使用量纲分析法对试验数据进行非线性回归得到关于持液量的关联式,此式较好地吻合了试验数据。  相似文献   

7.
采用计算流体力学(CFD)方法对折流式旋转床气相流场和压力分布进行了模拟,研究了折流式旋转床转速、进气量对转子外侧和内侧气相流场的影响,并用实验数据对模型进行了验证.结果表明,模拟结果与实验数据相对误差在9%以内;气体由转子外侧进入转子内时,流速明显改变,切向速度占总速度的76.1%~99.9%,轴向速度和径向速度均较小.随气体流量和转速增大,切向速度明显增大.气体流出转子内侧时,动圈附近存在一个最低压力和一个最高压力,产生了逆时针旋转和顺时针旋转2个漩涡.两漩涡交界处气体流动较剧烈,靠近转轴处气体存在回流,但速度较小.  相似文献   

8.
错流旋转填料床气相压降特性   总被引:5,自引:0,他引:5       下载免费PDF全文
旋转填料床的气相压降是旋转填料床应用和设计的一项重要指标。在气液两相错流流动条件下,利用空气-水系统对错流旋转填充床的气相压降进行分段模型化和实验研究。按照错流旋转填料床气体流动的路径将气相压降分为进口压降、填料层压降、集气段旋转动能转化压降和出气段压降。推导出压降与操作工况的关联式,其计算值与实测值吻合较好。实验表明错流旋转填料床的气相总压降与气体流量、旋转床转速、液体流量有关。在高转速和小气量的条件下,气相压降随气量增大先下降后上升;其他情况随气量增大而上升。错流旋转填料床气相压降随转速上升而下降,在小气量情况下转速对气相压降有明显影响。气相压降随进液量的增大而增大,当旋转填料床在低转速时进液量对气相压降有明显影响。  相似文献   

9.
折流式超重力旋转床转子结构对气相压降的影响   总被引:2,自引:1,他引:1  
折流式超重力旋转床是继旋转填料床之后出现的一种新型高效的气液传质设备.今采用空气-水系统对折流式旋转床进行了气相压降实验,考查了折流式转子结构对气相压降的影响,建立了折流式旋转床干床气相压降的理论模型.实验结果表明:折流式旋转床转子结构对气相压降影响较大,在动静折流圈结构不变的情况下,动静盘垂直间距存在某一最优值,通过实验得到了实验中所用的折流式旋转床的最佳转子高度为90 mm,实验也验证了旋转床设计时采用的等通流面积原则是符合气体运动规律的;干床压降理论模型的计算结果与实验值符合较好,为建立湿床压降模型奠定了基础.  相似文献   

10.
同心圈式旋转床是一种新型超重力旋转床,其转子由一组多孔板同心圈构成,相邻同心圈之间无填料或填充填料。液体在同心圈上存在滑移效应,滑移效应能够增大气液比表面积和改善液体在同心圈上的周向分布。本文采用乙醇-水物系对转子直径为1.0m的大型同心圈式旋转床进行全回流常压精馏实验,实验选用无丝网填料同心圈和填充丝网填料同心圈两种转子。实验结果表明,本大型同心圈式旋转床具有较大的处理量,其等板高度(HETP)随F因子和超重力因子的增大先减小后增大。填充丝网填料同心圈转子的HETP小于无丝网填料同心圈转子。在超重力因子为563.4和F因子为5.5(m/s)(kg/m3)0.5时,填充丝网填料同心圈转子的等板高度达到最小值51.5mm,每块理论板气相压降为1.5kPa。通过实验数据拟合得到了两种同心圈转子的HETP经验关联式。与折流式旋转床相比,同心圈式旋转床具有高通量和低压降的优点。  相似文献   

11.
折流式旋转床是一种新型的超重力旋转床,其核心部件是动、静结合的转子,转子由安装了动圈的动盘和安装了静圈的静盘上下相互嵌套而成。本实验中使用了一个常规的折流式转子(转子Ⅰ)和一个具有较短静圈的折流式转子(转子Ⅱ),在常压下分别以乙醇-水体系和空气-水体系对两个折流式转子进行了传质性能与流体力学实验,考察了静圈对折流式旋转床的传质、压降和功耗的影响。结果表明,静圈能明显强化传质过程,与转子Ⅰ相比,转子Ⅱ理论塔板数大约降低了的50%;转子Ⅰ的传质效率随转速的增大而增大,当转子的转速从400 r/min增加到1200 r/min,转子Ⅰ的传质效率增大了约40%,而转子Ⅱ的理论塔板数变化不明显;静圈使折流式转子具有较大的压降和功耗,转子Ⅱ的压降为转子Ⅰ的20%~50%,轴功率为转子Ⅰ的60%~80%。  相似文献   

12.
折流式旋转床的流体力学与传质性能研究   总被引:4,自引:0,他引:4  
开发了一种新型的旋转设备——折流式旋转床,其转子由动部件和静部件组合而成.与传统的旋转填料床相比,折流式旋转床易于实现连续精馏过程的中间进料,同时可方便地将多个转子同轴安装在-个壳体内,成倍提高单台设备的分离能力.对折流旋转床的流体力学和传质性能进行了实验研究,结果表明折流式旋转床具有良好的流体力学和传质性能.目前折流式旋转床已经成功应用于化学工业中的气液接触过程,尤其是连续精馏过程中.  相似文献   

13.
开发了一种新型的气液接触设备——网板填料复合旋转床。常压下以空气-水物系和乙醇-水物系在网板填料复合旋转床中进行流体力学与传质性能实验,考察了气液流量和转子转速对网板填料复合旋转床压降和传质性能的影响。实验结果表明,气体流量和转子转速的增大均使干、湿床气相压降增大;液体流量的增加对湿床压降的影响不明显。回流量和转速的增加均使等板高度减少至一定值后几乎不变。网板填料复合旋转床具有通量大、效率高、压降小的特点。  相似文献   

14.
折流式超重力旋转床的液泛   总被引:1,自引:1,他引:0  
在Wallis提出的气液两相逆流液泛关联式的基础上,建立了折流式超重力旋转床的液泛关联式. 以空气-水为物系,对转子直径288 mm、高55 mm的折流式旋转床进行了液泛实验. 旋转床转子采用动圈开单排孔和动圈开多排孔2种结构,用实验数据拟合出这2种结构的液泛关联式参数. 结果表明,随着气液流动参数的增加,折流式旋转床的液泛能力因子减小. 转速每增加100 r/min,液泛能力因子平均减小0.007 m/s. 在相同条件下,多排孔转子液泛能力因子比单排孔高8.5%.  相似文献   

15.
同心圈式超重力旋转床是一种新型超重力旋转床。液泛是超重力旋转床流体力学的重要特征。同心圈式超重力旋转床液体分布器和转子内缘之间的环形空间内的液滴被气体夹带,液滴受到离心力和气体曳力的作用,通过建立微分方程可获得液滴径向速度为零时的液滴运动径向距离。当该径向距离小于环形空间的径向距离,此时产生雾沫夹带液泛。由此建立同心圈式超重力旋转床雾沫夹带液泛模型。实验以空气和水为物系,测定了转子直径为1000 mm、高度为100 mm的同心圈式超重力旋转床在不同转速和表观液速下气体进口和出口之间的气相压降随表观气速的变化。气相压降随表观气速的增大先缓慢增大后快速增大。用表观气速对气相压降求导和目测旋转床中心气体出口处出现大量液体被气体夹带来确定液泛点气速。通过液泛点气速求得雾沫夹带液泛模型的系数k,并对该系数k进行关联。该雾沫夹带液泛模型的计算值和实验值吻合很好,平均偏差为3.1%。该模型优于Sherwood液泛模型,对同心圈式超重力旋转床的工业应用提供了必要的设计依据。  相似文献   

16.
王红军  李育敏  计建炳 《化工时刊》2009,23(11):25-27,34
采用实验的方法对折流式旋转床气体出口流场进行研究。实验在旋转床壳体直径为724mm,气体出口直径为152mm的折流式旋转床中进行,在常温常压空气单相的情况下采用5孔探针测量了不同转速和气量下旋转床出口位置的气相流场。实验得到了不同转速不同气量下气相切向、径向和轴向速度随无因次半径变化的流场分布情况,从而为折流式旋转床的设计提供理论基础。  相似文献   

17.
三角形螺旋填料旋转床全回流精馏性能研究   总被引:3,自引:1,他引:2  
为了寻找强化气液传质过程的有效途径,自制了1套小型旋转填料床,床内填充了φ2mm×2mm三角形螺旋填料,以乙醇-水为实验物系,进行全回流精馏实验研究.实验结果表明:三角形螺旋填料旋转床存在一最佳转速nopt=1050r/min,当转速nnopt时,理论板数随液体流量和气体流量的增大而减小,且减小的很快.在nopt=1050r/min、液体流量L=14.7L/h、气体流量V=7.4m3/h时传质效果最好,每米填料相当于88块理论板,在适宜的转速范围内每米填料相当于62~88块理论板.三角形螺旋填料旋转床使传质过程得到极大强化,其传质效果比重力场三角形螺旋填料塔提高1倍左右.  相似文献   

18.
采用空气-水体系,对装有4种不同规格规整丝网填料的旋转填充床的压降特性进行了实验研究,考察了转速、气体流量、液体流量等操作参数及填料特性对气相压降的影响规律,并与传统不锈钢波纹丝网填料旋转填充床压降进行了比较. 结果表明,装有规整丝网填料的旋转填充床压降可降低35%~70%. 进一步采用压降较低的规整丝网填料以(NH4)2SO3为吸收剂进行氨法脱硫性能研究,结果表明,随转子转速和(NH4)2SO3浓度增大,SO2脱除率升高;随进气口SO2浓度升高及气液比增大,SO2脱除率降低;SO2脱除率最高可达97%,可满足国家排放标准.  相似文献   

19.
针对折流式旋转床压降高、能耗大的问题,提出了一种新型超重力旋转床设备--径向叶片式旋转床。首先,对该旋转床的压降进行了理论分析和建模,并利用水-空气体系进行了实验研究。通过改变气量、转速和液量探究了新型径向叶片式旋转床压降的变化规律,结果表明压降随气量、转速和液量的增加而增加,且随着气量和转速的增加,液量对压降的贡献逐渐减小。压降模型的预测值与实验数据的相对偏差基本在10%以内,表明模型可以较好地预测新型径向叶片式旋转床的压降。另外,通过计算流体力学(CFD)软件的模拟获得了旋转床内气相流场和压力分布的结果,发现转子内压降是总压降的主要部分;气体进入转子后会因叶片作用使得周向速度变大,并在转子外缘处达到最大值;气体的进口流速将会影响旋转床内的气相分布。利用实验数据对CFD模拟结果进行了验证,两者的相对偏差在10%左右。  相似文献   

20.
超重力旋转床液体流动的可视化研究   总被引:1,自引:0,他引:1  
超重力旋转床是一项强化混合与传质的新技术,在石油化工、环境保护、制药等行业有着广阔的应用前景。今以水为研究对象,拍摄超重力旋转床内从不同丝径的填料甩出的液体形态图片,利用后处理软件计算得到液滴的平均直径和速度。研究结果表明,液滴平均直径随填料径向厚度、转速的增大而减小,随液量增加而增大;液滴速度则随填料径向厚度、转速及液量增大而增大,同时关联出填料层内液滴平均直径和速度的关系式。研究结果为超重力旋转床的理论研究和工业上的应用提供了一定的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号