首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reasonable design and preparation of non-noble metal electrocatalysts with predominant catalytic activity and long-term stability for oxygen evolution reaction (OER) are essential for electrocatalytic water splitting. Ni foam (NF) is highlighted for its 3D porous structure, impressive conductivity and large specific surface area. Herein, nano/micro structured dendritic cobalt activated nickel sulfide grown on 3D porous NF (Co–Ni3S2/NF) has been successfully synthesized by one-step hydrothermal method. Due to the ingenious incorporation of Co, Co–Ni3S2/NF electrode shows auspicious electrocatalytic performance for OER compared with Ni3S2/NF electrode. As a result, Co–Ni3S2/NF needs overpotential of only 274 and 459 mV at current density of 10 and 50 mA cm−2, respectively, while Ni3S2/NF requires overpotential of 344 and 511 mV. At potential of 2.0 V (vs. RHE), Co–Ni3S2/NF displays current density of 191 mA cm−2, while Ni3S2/NF just attains current density of only 135 mA cm−2. Moreover, Co–Ni3S2/NF demonstrates excellent stability for uninterrupted OER in alkaline electrolyte. The strategy of designing and preparing cobalt activated nickel sulfide grown on NF renders a magnificent prospect for the development of metal-sulfide-based oxygen evolution catalysts with excellent electrocatalytic performances.  相似文献   

2.
In order to improve the OER performance, Ni3S2-based catalysts were directly grown on Ni substrate by simultaneously doping of Fe and compositing with reduced graphene oxide (rGO). Synthesis and loading of Ni3S2/rGO were completed during a one-step hydrothermal process, in which Ni foam acted as support and Ni source of Ni3S2, as well as the subsequent current collector. It is found that either GO or Fe salt tuned Ni3S2 nanosheets into thinner and smaller interconnected nanosheets anchored on rGO, which enhanced the charge transfer resistance and improved the active sites. Hence, as-synthesized Fe-doped Ni3S2/rGO composite at 120 °C (Fe-2-Ni3S2/rGO@NF-120) exhibited an enhancement on OER performances: An overpotential of 247 mV at 20 mA cm−2, and a small Tafel slope of 63 mV dec−1, as well as an excellent stability of: 20 h maintaining at 20 mA cm−2 or 50 mA cm−2.  相似文献   

3.
Developing non-noble metal catalysts with excellent electrocatalytic performance and stability is of great significance to hydrogen production by water electrolysis, but there are still problems of low activity, complex preparation and high cost. Herein, we fabricated a novel Ni3S2/Ni(OH)2 dual-functional electrocatalyst by a one-step fast electrodeposition on nickel foam (NF). While maintaining the electrocatalytic performance of Ni3S2, the existence of heterostructure and Ni(OH)2 co-catalyst function greatly improves the overall water splitting performance of Ni3S2/Ni(OH)2–NF. Hence, It shows a low overpotential of 66 mV at 10 mA cm?2 for HER and 249 mV at 20 mA cm?2 for OER. The dual-functional electrocatalyst needs only 1.58 V at 20 mA cm?2 when assembled two-electrode electrolytic cell. Impressively, the electrocatalyst also shows outstanding catalytic stability for about 800 h when 20 and 50 mA cm?2 constant current was applied, respectively which demonstrates a potential electrocatalyst for overall water splitting.  相似文献   

4.
Exploring high-performance non-noble metal electrocatalysts is pivotal for eco-friendly hydrogen energy applications. Herein, featuring simultaneous Chromium doping and in-grown heterointerface engineering, the Cr doping Ni3FeN/Ni heterostructure supported on N-doped graphene tubes (denoted as Cr–Ni3FeN/Ni@N-GTs) was successfully constructed, which exhibits the superior bifunctional electrocatalytic performances (88 mV and 262 mV at 10 mA cm−2 for HER and OER, respectively). Furthermore, an alkaline electrolyzer, employing Ni3FeN/Ni@N-GTs as both the cathode and the anode, requires a low cell voltage of 1.57 V at 10 mA⋅cm−2. Cr doping not only modulates the electronic structure of host Ni and Fe but also synchronously induces nitrogen vacancies, leading to a higher number of active sites; the in-grown heterointerface Cr–Ni3FeN/Ni induces the charge redistribution by spontaneous electron transfer across the heterointerface, enhancing the intrinsic catalytic activity; the N-GTs skeleton with excellent electrical conductivity improves the electron transport and mass transfer. The synergy of the above merits endows the designed Cr–Ni3FeN/Ni@ N-GTs with outstanding electrocatalytic properties for alkaline overall water splitting.  相似文献   

5.
To develop earth-abundant and cost-effective catalysts for overall water splitting is still a major challenge. Herein, a unique “raisins-on-bread” Ni–S–P electrocatalyst with NiS and Ni2P nanoparticles embedded in amorphous Ni(OH)2 nanosheets is fabricated on Ni foam by a facile and controllable electrodeposition approach. It only requires an overpotential of 120 mV for HER and 219 mV for OER to reach the current density of 10 mA cm−2 in 1 M KOH solution. Employed as the anode and cathode, it demonstrates extraordinary electrocatalytic overall water splitting activity (cell voltage of only 1.58 V @ 10 mA cm−2) and ultra-stability (160 h @ 10 mA cm−2 or 120 h @50 mA cm−2) in alkaline media. The synergetic electronic interactions, enhanced mass and charge transfers at the heterointerfaces facilitate HER and OER processes. Combined with a silicon PV cell, this Ni–S–P bifunctional catalyst also exhibits highly efficient solar-driven water splitting with a solar-to-hydrogen conversion efficiency of 12.5%.  相似文献   

6.
In order to solve the problem of large overpotential in water electrolysis for hydrogen production, transition metal sulfides are promising bifunctional electrocatalysts for hydrogen evolution reaction/oxygen evolution reaction that can significantly reduce overpotential. In this work, Ni3S2 and amorphous MoSx nanorods directly grown on Ni foam (Ni3S2-MoSx/NF) were prepared via one-step solvothermal process, which were used as a high-efficient electrocatalyst for overall water splitting. The Ni3S2-MoSx/NF composite exhibits very low overpotentials of 65 and 312 mV to reach 10 mA cm−2 and 50 mA cm−2 in 1.0 M KOH for HER and OER, respectively. Besides, it exhibits a low Tafel slope (81 mV dec−1 for HER, 103 mV dec−1 for OER), high exchange current density (1.51 mA cm−2 for HER, 0.26 mA cm−2 for OER), and remarkable long-term cycle stability. This work provides new perspective for further the development of highly effective non-noble-metal materials in the energy field.  相似文献   

7.
The development of cheap, high-efficiency, and stable oxygen evolution reaction (OER) electrocatalysts is a current research hotspot. In this work, reduced graphene oxide (rGO) composite Ni3S2 microspheres grown directly on nickel foam (Ni3S2-rGO/NF) were prepared by tube furnace calcination and hydrothermal method. The Ni3S2-rGO/NF had excellent OER catalytic activity and stability with an overpotential of 303 mV at the current density of 100 mA cm−2, which was 100 mV lower than that of Ni3S2/NF, and its Tafel slope was as low as 23 mV·dec−1. The main reason for enhancing OER activity of the Ni3S2-rGO/NF is due to synergistic effect of Ni3S2 microspheres and rGO, which inhibited the production of NiS and refined the micron size of Ni3S2. This work offers a new method for developing stable and efficient OER catalysts.  相似文献   

8.
Efficient oxygen evolution reaction (OER) electrocatalysts with non-noble metals are very critical for the large-scale exploitation of electrocatalytic hydrogen production systems. To improve the catalytic activity of OER electrocatalysts, several design strategies, such as construction of nanostructures, porous structures and composite materials have been proposed. Herein, spinel NiCo2O4 3-D nanoflowers supported on graphene nanosheets (GNs) are prepared by a simple solvothermal synthesis method as non-noble metal electrocatalysts for OER. The present NiCo2O4/GNs composite integrates multiple advantages of nanostructures, porous structures and composite materials, including high surface area, abundant catalytic sites and high stability. Benefiting from the favorable features, the NiCo2O4/GNs composite exhibits a better OER performance than NiCo2O4 and RuO2 in alkaline medium, which has a low onset potential (1.50 V), a small Tafel slope (137 mV dec−1). The present work opens a new window for the construction of the carbon-supported 3-D nanostructure of transition metal catalysts with optimizable electrocatalytic performances for electrocatalytic hydrogen production.  相似文献   

9.
Constructing highly efficient nonprecious electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is essential to improve the efficiency of overall water splitting, but still remains lots of obstacles. Herein, a novel 3D peony flower-like electrocatalyst was synthesized by employing Mo–Ni2S3/NF nanorod arrays as scaffolds to in situ growth ultrathin NiFe LDH nanosheets (Mo-Ni2S3@NiFe LDH). As expected, the novel peony flower-like Mo–Ni2S3@NiFe LDH displays superior electrocatalytic activity and stability for both OER and HER in alkaline media. Low overpotentials of only 228 mV and 109 mV are required to achieve the current densities of 50 mA cm?2 and 10 mA cm?2 for OER and HER, respectively. Additionally, the material remarkably accelerates water splitting with a low voltage of 1.54 V at 10 mA cm?2, which outperforms most transition metal electrodes. The outstanding electrocatalytic activity benefits from the following these features: 3D peony flower-like structure with rough surface provides more accessible active sites; superhydrophilic surfaces lead to the tight affinity between electrode with electrolyte; metallic Ni substrate and highly conductive Mo–Ni2S3 nanorods scaffold together with offer fast electron transfer; the nanorod arrays and porous Ni foam accelerate gas bubble release and ions transmission; the strong interfacial effect between Mo-doped Ni3S2 and NiFe LDH shortens transport pathway, which are benefit for electrocatalytic performance enhancement. This work paves a new avenue for construction and fabrication the 3D porous structure to boost the intrinsic catalytic activities for energy conversion and storage applications.  相似文献   

10.
It is of high significance to design robust, low-cost and stable electrocatalysts for the oxygen evolution reaction (OER) under alkaline medium. In this communication, we present the exploitation of Ni3S2@Co(OH)2 which directly grown on nickel foam (Ni3S2@Co(OH)2/NF) as a robust and stable electrocatalyst for OER. Such Ni3S2@Co(OH)2/NF-5h demanding overpotential of only 290 mV is less than that of Ni3S2@Co(OH)2/NF-10h (310 mV), Ni3S2@Co(OH)2/NF-2h (320 mV) and Ni3S2/NF(350 mV), respectively, to drive a geometrical catalytic current density of 35 mA cm−2, which is also better than that of noble metal catalyst IrO2/NF (320 mV). In addition, the Ni3S2@Co(OH)2/NF-5h presents a superior long-term electrocatalytic stability, keeping its activity at 26 mA cm−2 for 40 h.  相似文献   

11.
Increasing worldwide energy consumption has prompted considerable study into energy generation and energy storage systems in recent years. Chemical fuels may be produced efficiently via electrocatalytic water splitting, which uses electric and solar power. The development of efficient anodic electrocatalysts for efficient oxygen evolution reaction (OER) is a greater concern of present energy research. Cerium oxide (CeO2) are promising electrocatalysts that exhibit outstanding OER but their reduced stability obstructs the practical application. A novel strategy was established to construct an effective catalyst of heteroatom (N, B, P and S) doped CeO2 matrix were prepared. Moreover, the doping of heteroatoms into the CeO2 matrix processes the improved electronic conductivity, reactive sites, increases the electrochemical catalytic activity, which enhances the water oxidation reaction. Consequently, well-suited alkaline electrolysers were brought together for water oxidation to ideal OER electrocatalytic activity. The OER activity of the electrocatalysts follows the order of S–CeO2 (190 mV@10 mA cm−2), N– CeO2 (220 mV @10 mA cm−2), P– CeO2 (230 mV @10 mA cm−2), B–CeO2 (250 mV @10 mA cm−2) and CeO2 (260 mV @10 mA cm−2) in 1 M of KOH. From the kinetics analysis, Tafel slope value achieved for catalysts CeO2, B–CeO2, P–CeO2, N–CeO2 and S–CeO2 are 142 mV dec−1,121 mV dec−1, 102 mV dec−1, 98 mV dec−1 and 83 mV dec−1 respectively. These results validate that the S–CeO2 electrode is prominent for OER performance with the requirement of cell voltage of 1.42 V at 10 mA cm−2 current density. In addition, sulphur doped CeO2 relatively have excellent stability through chrono-potentiometric analysis lasting for 20 h. Although the heteroatoms doped CeO2 is acts as anode material, the preparation method is widespread, which will reduce the synthesis cost and streamline the preparation of electrode for OER. This research effort delivers a complete advantage for the development of robust, environmentally friendly and highly dynamic electrocatalysts for OER activity.  相似文献   

12.
The development of cost-effective oxygen evolution reaction (OER) electrocatalytic electrodes is one of the essential means of applying green hydrogen energy. Due to the complex steps in the anodic OER, the high overpotential hinders the kinetics of water splitting. In this paper, the sulfided NiFe coating was innovatively designed as a self-supporting OER electrode by high-velocity oxygen fuel (HVOF) spraying coupled with one-step gas phase sulfuration. The thickness of the NiFe coating is approximately 20 μm. After the sulfuration treatment, the surface of the NiFe coating is remolded into a uniform rock sugar-like structure, and simultaneously forms new NiS and Ni3S4 phases. The sulfided NiFe coating electrode shows relatively low overpotentials of 220 mV and 253 mV at the current density of 10 mA cm−2 and 100 mA cm−2, respectively, and the Tafel slope is as low as 28.6 mV dec−1. The excellent electrocatalytic activity is mainly attributed to the synergistic effect of sulfides, the adsorption of OH by the Ni3+ in alkaline electrolyte, and the acceleration of O2 separation by the S2− through promoting the cleavage of O–O bonds. In addition, the sulfided NiFe coating electrode also has a small charge transfer resistance, and the potential stability is as high as 98.1% in the 70 h stability test. Therefore, the development of sulfided transition metal coating electrodes can provide a new idea for the large-scale industrialization of water splitting.  相似文献   

13.
An electrocatalyst based on a unique three-dimensional (3D) N-doped porous carbon sheet networks embedded with CoP2 nanoparticles (CoP2@3D-NPC) was synthesized by a facile pyrolysis process as well as an in-situ phosphatization method. The improved CoP2@3D-NPC hybrid materials show excellent electrocatalytic activity toward HER and OER. This material provides a low overpotential of 126 mV at 10 mA cm−2 in 0.5 M H2SO4 and 167 mV at 20 mA cm−2 in 1.0 M KOH for HER with a small Tafel slope value of 59 mV dec−1, respectively. Besides, it is also active for the OER under alkaline conditions. Such a prominent property of the CoP2@3D-NPC electrocatalyst could be attributed to its excellent electrical conductivity of 3D carbon substrate, strong synergistic effect between CoP2 nanoparticles and carbon nanosheet as well as extra active sites created by the N-doped structure.  相似文献   

14.
Binder-free NiFe-based electrocatalyst with aligned pore channels has been prepared by freeze casting and served as a bifunctional catalytic electrode for oxygen and hydrogen evolution reaction (OER and HER). The synergistic effects between Ni and Fe result in the high electrocatalytic performance of porous NiFe electrodes. In 1.0 M KOH, porous Ni7Fe3 attains 100 mA cm−2 at an overpotential of 388 mV with a Tafel slope of 35.8 mV dec−1 for OER, and porous Ni9Fe1 exhibits a low overpotential of 347 mV at 100 mA cm−2 with a Tafel slope of 121.0 mV dec−1 for HER. The Ni9Fe1//Ni9Fe1 requires a low cell voltage of 1.69 V to deliver 10 mA cm−2 current density for overall water splitting. The excellent durability at a high current density of porous NiFe electrodes has been confirmed during OER, HER and overall water splitting. The fine electrocatalytic performances of the porous NiFe-based electrodes owing to the three-dimensionally well-connected scaffolds, aligned pore channels, and bimetallic synergy, offering excellent charge/ion transfer efficiency and sizeable active surface area. Freeze casting can be applied to design and synthesize various three-dimensionally porous non-precious metal-based electrocatalysts with controllable multiphase for energy conversion and storage.  相似文献   

15.
Oxygen evolution reaction (OER) is regarded as a limit-efficiency process in electrochemical water splitting generally, which needs to develop the effective and low-cost non-noble metal electrocatalysts. Oxygen vacancies have been verified to be beneficial to enhance the electrocatalytic performance of catalysts. Herein, we report the facile synthesis of reduced CoFe2O4/graphene (r-CFO/rGO) composite with rich oxygen vacancies by a citric acid assisted sol-gel method, heat treatment process and the sodium borohydride (NaBH4) reduction. The introduction of graphene and freezing dry technique prevents the restacking of GO and the aggregation of CFO nanoparticles (NPs) and increases the electronic conductivity of the catalyst. Fast heating rate and low anneal temperature favors to obtain low crystallinity and lattice defects for CFO. NaBH4 reduction treatment further creates the rich oxygen vacancies and electrocatalytic active sites. The obtained r-CFO/rGO with high specific surface area (108 m2 g−1), low crystallinity and rich oxygen vacancies demonstrates a superior electrocatalytic activity with the smaller Tafel slope (68 mV dec−1), lower overpotential (300 mV) at the current density of 10 mA cm−2, and higher durability compared with the commercial RuO2 catalyst. This green, low-cost method can be extended to fabricate similar composites with rich defects for wide applications.  相似文献   

16.
Searching for efficient, stable and low-cost nonprecious catalysts for oxygen and hydrogen evolution reactions (OER and HER) is highly desired in overall water splitting (OWS). Herein, presented is a nickel foam (NF)-supported MoS2/NiFeS2 heterostructure, as an efficient electrocatalyst for OER, HER and OWS. The MoS2/NiFeS2/NF catalyst achieves a 500 mA cm−2 current density at a small overpotential of 303 mV for OER, and 228 mV for HER. Assembled as an electrolyzer for OWS, such a MoS2/NiFeS2/NF heterostructure catalyst shows a quite low cell voltage (≈1.79 V) at 500 mA cm−2, which is among the best values of current non-noble metal electrocatalysts. Even at the extremely large current density of 1000 mA cm−2, the MoS2/NiFeS2/NF catalyst presents low overpotentials of 314 and 253 mV for OER and HER, respectively. Furthermore, MoS2/NiFeS2/NF shows a ceaseless durability over 25 h with almost no change in the cell voltage. The superior catalytic activity and stability at large current densities (>500 mA cm−2) far exceed the benchmark RuO2 and Pt/C catalysts. This work sheds a new light on the development of highly active and stable nonprecious electrocatalysts for industrial water electrolysis.  相似文献   

17.
Developing efficient and stable non-noble metal oxygen evolution reaction (OER) electrocatalysts for sustainable overall water-splitting is extremely desirable but still a great challenge. Herein, we developed a facile strategy to fabricate Co3O4–CoOOH heterostructure nanosheet arrays with oxygen vacancies grown on carbon paper (Co3O4–CoOOH/CP). Benefiting from the unique 3D architecture, large surface area, synergistic effects between Co3O4, CoOOH and oxygen vacancies, the obtained self-supporting Co3O4–CoOOH/CP presents excellent electrocatalytic OER activity (low overpotentials of 245 and 390 mV at 10 and 100 mA cm−2) and robust long-term stability in alkaline condition. The present strategy provides the opportunities for the future rational design and discovery of high-performance non-noble metal based electrocatalysts for advanced water oxidation and beyond.  相似文献   

18.
Developing a multifunctional and sustainable electrode material for hydrogen evolution reaction and supercapacitors is a highly feasible avenue for producing the high energy density and renewable energies. In our study, nanostructured NiCo2S4/Ni3S2/NF nanoarrays are rational developed in experiments via a simple hydrothermal reaction. Ascribed to the 3D nanostructured NiCo2S4/Ni3S2 with numerous exposure active sites and large contact areas for the electrolyte, the binder-free feature of NiCo2S4/Ni3S2/NF facilitates a low charge transfer resistance, as well as the synergetic effect of NiCo2S4 and Ni3S2. The obtained electrocatalyst showed ultrahigh electrocatalytic activity with an overpotential of 111 mV at 10 mA cm−2 and a Tafel slope of 57 mV dec−1. In addition, the electrode showed an area specific capacity of 6.13 F cm−2 at 10 mA cm−2 and superior rate capability (2.72 F cm−2 at 80 mA cm−2), accompanied by excellent cycling stability. This results presented in our work can provide an effective strategy for rational design of other hybrid materials with excellent electrochemical performance in the application of electrocatalysis and supercapacitors.  相似文献   

19.
The rational design of catalysts with low cost, high efficient and robust stability toward oxygen evolution reaction (OER) is greatly desired but remains a formidable challenge. In this work, a one-pot, spatially confined strategy was reported to fabricate ultrathin NiFe layered double hydroxide (NiFe-LDH) nanosheets interconnected by ultrafine, strong carbon nanofibers (CNFs) network. The as-fabricated NiFe-LDH/CNFs catalyst exhibits enhanced OER catalytic activity in terms of low overpotential of 230 mV to obtain an OER current density of 10 mA cm?2 and very small Tafel slope of 34 mV dec?1, outperforming pure NiFe-LDH nanosheets assembly, commercial RuO2, and most non-noble metal catalysts ever reported. It also delivers an excellent structural and electrocatalytic stability upon the long-term OER operation at a large current of 30 mA cm?2 for 40 h. Furthermore, the cell assembled by using NiFe-LDH/CNFs and commercial Pt/C as anode (+) and cathode (?) ((+)NiFe-LDH/CNFs||Pt/C(?)) only requires a potential of 1.50 V to deliver the water splitting current of 10 mA cm?2, 130 mV lower than that of (+)RuO2||Pt/C(?) couple, demonstrating great potential for applications in cost-efficient water splitting devices.  相似文献   

20.
Fabricating effective yet inexpensive catalysts is an important target in the research of water electrolysis and clean energy generation. Key challenges still remaining in this area are the rich density of surface-active sites, efficient interfacial charge transfer and improved reaction kinetics. Herein, Ni2P/CuCo2S4 p-n junctions are constructed via an in situ hydrothermal growth of Ni2P nanoparticles on CuCo2S4 nanosheets. Extensive X-ray photoelectron, optical absorption and electrochemical spectroscopy studies coupled with density functional theory calculations provide a mechanistic understanding of the electrochemical behaviour of these catalysts. The integrated Ni2P/CuCo2S4 p-n junctions, owing to the intimate interfacial interactions, offer interesting possibilities to purposively modulate the electronic structure of active sites at the interface, and thus to improve the hydrogen adsorption energetics and electrochemical reaction kinetics. As a result, the catalyst with 30 wt% Ni2P content displays high intrinsic electrocatalytic activity, requiring overpotentials of 183 and 360 mV to deliver 10 mA cm−2 for HER and 40 mA cm−2 for OER in alkaline media, respectively, far lower than those of individual Ni2P (400 and 520 mV) and CuCo2S4 (348 and 380 mV), further showing remarkable durability for 30 h. In addition, an alkaline two-electrode water electrolyzer assembled by Ni2P/CuCo2S4 nano-heterojunctions exhibits a relatively low cell potential of 1.67 V at 10 mA cm−2. These Ni2P-modified CuCo2S4 heterostructures demonstrate great potential for renewable hydrogen production technologies, including water electrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号