首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 367 毫秒
1.
采用超声波提取牡丹籽壳多酚,以多酚含量为指标,通过单因素实验分别考察乙醇体积分数、液料比、提取时间和提取温度的影响,并采用响应面法获得最优的超声波提取牡丹籽壳多酚的工艺条件。以抗氧化剂(VC和BHT)为参照,采用DPPH和FRAP法评估牡丹籽壳多酚的抗氧化性。结果表明,超声波提取牡丹籽壳多酚最优工艺条件为:超声波功率100 W,乙醇体积分数70%,液料比25∶1,提取时间80 min,提取温度60℃;在最优条件下,多酚含量为5.75%。牡丹籽壳多酚清除DPPH自由基的IC50为71.0μg/m L,FRAP值为18.33 mmol/L,具有一定的抗氧化作用。  相似文献   

2.
目的:系统地评价火棘果粗分体系抗氧化活性,同时探究抗氧化能力与总多酚含量之间的关系。方法:用75%乙醇冷浸提取火棘果,分别用石油醚、乙酸乙酯、正丁醇和水分为四个不同极性部位,然后测定了各部位萃取物对DPPH自由基、ABTS+自由基的清除能力,并且测定了总还原力、FRAP值和总多酚含量,同时考察总酚含量与抗氧化活性的关系。结果:火棘果提取物的不同极性部位均有抗氧化活性,其中水、乙酸乙酯和正丁醇部位提取物表现出较好的抗氧化活性,石油醚部位的抗氧化活性最弱;各部位提取物的抗氧化活性与总多酚含量呈现较好的相关关系。其中,水部位提取物对DPPH和ABTS+自由基清除率最高,IC50值分别为(0.76±0.03)mg/m L和(1.71±0.10)mg/m L;乙酸乙酯部位FRAP值最大,为(382.20±4.72)μmol Fe2+/g干样;正丁醇部位总酚含量最高,为(2763±3.91)mg GAE/100g干样。  相似文献   

3.
采用DPPH法、ABTS法和FRAP法3种测定法对槟榔提取物体外抗氧化活性进行综合评价,并分析其总多酚与总黄酮含量与抗氧化活性的关系。研究结果发现,槟榔提取物乙酸乙酸部位和正丁醇部位均有一定的抗氧化活性。其中乙酸乙酯部位清除DPPH自由基和ABTS+自由基的能力(IC50=14.60、2.04μg/m L)和还原Fe3+的能力(TEAC=4762.99μmol/g)均强于阳性对照BHT(DPPH方法:IC50=24.49μg/m L;ABTS方法:IC50=6.56μg/m L;FRAP方法:TEAC=2503.17μmol/g),正丁醇部位清除DPPH自由基和ABTS+自由基的能力(IC50=44.32、7.62μg/m L)和还原Fe3+的能力(TEAC=1587.42μmol/g)均弱于阳性对照BHT,且乙酸乙酯部位总多酚和总黄酮含量均大于正丁醇部位。可见,乙酸乙酯部位清除DPPH自由基、ABTS+自由基及还原Fe3+的能力可能与其总多酚、总黄酮含量高有关。  相似文献   

4.
张强  苏印泉  张京芳 《食品科学》2011,32(13):23-27
为研究杜仲叶抗氧化成分,深入开发杜仲叶资源,测定杜仲叶水提取物及其氯仿、乙酸乙酯、正丁醇萃取物和萃余相的DPPH自由基清除活性、羟自由基清除活性、抗氧化活性、金属离子络合力和还原力,并与抗氧化剂BHT、VE以及VC的抗氧化活性比较;同时测定杜仲叶萃取物中的总酚含量。结果发现:乙酸乙酯相和正丁醇萃取物总酚含量远大于水提取物,含量依次为465.1mg/g和286.4mg/g。二者在亚油酸乳浊液中抗氧化活性高于VE,接近BHT;DPPH自由基清除活性接近VC,显著高于BHT;正丁醇萃取物对羟自由基清除活性接近VE;乙酸乙酯萃取物对三价铁离子还原力高于BHT和VC;但是所有样品对二价铁离子络合力均较低。此结果表明乙酸乙酯和正丁醇可以富集杜仲叶抗氧化成分,杜仲叶提取物具有发展为抗氧化剂的潜力。  相似文献   

5.
目的研究桑籽不同极性部位的抗氧化活性。方法采用不同极性的溶剂提取桑籽,得到不同极性部位的提取物,通过测定对二苯代苦味酰肼基(DPPH)的清除能力,评价桑籽不同极性部位的抗氧化活性。结果桑籽不同极性部位的抗氧化性不同,乙酸乙酯部位EC50(半数清除率)为0.0540 mg/m L;正丁醇部位EC50为0.1521 mg/m L;石油醚部位EC50为0.3746 mg/m L;水部位EC50为0.2156 mg/m L。结论桑籽具有较强的抗氧化能力,其中乙酸乙酯部位抗氧化能力最强,石油醚部位抗氧化能力最弱。  相似文献   

6.
采用不同极性有机溶剂萃取法,将菠萝皮渣醇提物分为石油醚、乙酸乙酯、正丁醇和水相4个不同极性部位。福林酚法测定各极性部位多酚含量,并以BHT为对照,利用清除DPPH·和·OH法评价各极性部位的抗氧化活性。结果显示,菠萝皮渣醇提物水部、正丁醇部、石油醚部、乙酸乙酯部和BHT对DPPH·的半清除率(IC50)分别是:0.527、0.279、0.198、0.011、0.019 mg/m L;对·OH的半清除率(IC50)分别是:0.490、0.321、0.180、0.143、0.026 mg/m L。其石油醚部、水部、正丁醇部和乙酸乙酯部多酚含量分别为:12.27、21.43、44.18、163.30 mg/m L。表明菠萝皮渣醇提物不同极性部位均具有一定的抗氧化活性,乙酸乙酯部多酚含量最高,该部位抗氧化活性也最强。  相似文献   

7.
为充分利用牡丹籽粕中的多酚资源,采用响应面法优化超临界CO_2萃取牡丹籽粕多酚工艺,以多酚提取量为响应值,得到了乙醇(夹带剂)体积分数、萃取温度和萃取压力的最优条件;通过测定牡丹籽粕多酚对DPPH和ABTS自由基的清除能力,对其抗氧化活性进行评价。结果表明,超临界CO_2萃取最佳工艺条件为乙醇体积分数83%、萃取温度52℃、萃取压力32 MPa,此条件下牡丹籽粕多酚提取量可达18.58 mg/g;牡丹籽粕多酚和VC对DPPH·清除率的IC_(50)分别为128.22μg/mL和147.72μg/mL,对ABTS~+·清除率的IC_(50)分别为109.18μg/mL和142.66μg/mL,牡丹籽粕多酚对DPPH·和ABTS~+·的清除能力均显著强于VC。  相似文献   

8.
为研究厚朴叶抗氧化活性成分,测定厚朴叶90%乙醇提取物及其石油醚、正丁醇、乙酸乙酯、甲醇萃取物和萃余相浓缩物的1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基清除活性、2,2-联氮基-双-(3-乙基苯并噻唑啉-6-磺酸)二铵盐[2,2-azino-bis(3-ethylbenzthiazoline-6-sulonic acid),ABTS]自由基清除活性和总还原力,并与抗氧化剂2,6-二叔丁基-4-甲基苯酚(2,6-di-tert-butyl-4-methylphenol,BHT)、抗环血酸(VC)的抗氧化活性比较;同时测定厚朴叶乙醇提取物和不同极性部位中的总酚含量。结果发现:乙酸乙酯萃取物总酚含量最高,为(178.56±11.32)mg GAE/g,其含量高于正丁醇萃取物和90%乙醇提取物。厚朴叶乙醇提取物和不同极性部位均具有一定抗氧化活性,其中乙酸乙酯萃取物的抗氧化活性最强,DPPH自由基清除活性接近VC,显著高于BHT,其EC50为(86.27±0.02)μg/mL;对ABTS+自由基的清除活性接近VC和BHT;对Fe3+还原力较BHT低,但显著高于正丁醇萃取物。厚朴叶乙醇提取物和不同极性部位的抗氧化性与总酚含量呈显著相关性。采用薄层色谱-生物自显影法定性检测抗氧化活性,其结果与3种抗氧化测定方法的结果一致。综上,厚朴叶乙酸乙酯萃取物具有良好的抗氧化活性,可用于进一步分离抗氧化活性物质,具有发展为天然抗氧化剂的潜力。  相似文献   

9.
本实验以麻疯树籽壳乙醇提取物中黄酮质量浓度为内标,以维生素C(VC)和2,6-二叔丁基-4-甲基苯酚(BHT)为对照,通过超氧阴离子(O-2·)、1,1-二苯基-2-苦基肼自由基(DPPH·)和亚硝酸盐(NO-2)的清除能力,以及还原力和总抗氧化能力的测定,评价了麻疯树籽壳乙醇提取物的抗氧化活性。实验结果表明,麻疯树籽壳乙醇提取物的O-2·清除率的半数抑制浓度(IC50)为0.502mg/m L,小于VC的0.654mg/m L;其DPPH·与NO-2清除率的IC50分别为0.185、0.494mg/m L,均小于BHT;麻疯树籽壳乙醇提取物中黄酮质量浓度在0.7~1.0mg/m L时,其还原力与同质量浓度VC相当,大于BHT;在测定范围时,其总抗氧化能力随质量浓度增加而增强,且大于同质量浓度的BHT,而小于VC。由此说明,麻疯树籽壳乙醇提取物具有较强的抗氧化活性。  相似文献   

10.
采用DPPH自由基清除法、ABTS自由基清除法、羟自由基清除法、超氧阴离子清除法、还原力测定法和螯合力测定法六种抗氧化模型对藏茜草95%乙醇提取物以及石油醚相,乙酸乙酯相,正丁醇相和水相等4个不同极性部位的抗氧化活性进行评价,同时分析抗氧化活性与总酚和总黄酮含量的关系。研究结果表明,除水提部位外,藏茜草其它4个极性部位提取物均表现出一定的抗氧化活性,其抗氧化活性与多酚和总黄酮含量呈显著相关。其中,乙酸乙酯部位总黄酮和总多酚含量最高,抗氧化活性也最强,其总黄酮和总多酚含量分别为(232.03±1.74)mg芦丁当量/g提取物和(173.53±1.75)mg没食子酸当量/g提取物,其清除DPPH自由基、超氧阴离子、羟自由基和ABTS自由基的EC50分别为0.06±0.01、0.17±0.01、(0.24±0.02)mg/m L和(1.75±0.23)μg/m L,对金属离子螯合力的EC50为(0.11±0.01)mg/m L。藏茜草的乙酸乙酯极性部位具有显著的抗氧化活性,是天然抗氧化活性化合物的良好来源。  相似文献   

11.
采用超声提取不同月份准噶尔山楂叶,系统溶剂萃取其醇提物得到环己烷部位、乙酸乙酯部位、正丁醇部位和水部位,分别测定其总黄酮含量,通过清除DPPH自由基、铁离子还原能力和α-葡萄糖苷酶抑制活性评价准噶尔山楂叶不同提取物的体外抗氧化活性及降血糖活性。结果表明,准噶尔山楂叶各提取物均有不同程度的抗氧化和α-葡萄糖苷酶抑制活性,其中以总黄酮含量最高的乙酸乙酯部位(28.87 mg/g)效果最佳,其对DPPH清除活性(IC_(50)=0.026 mg/m L)远强于阳性对照BHA(IC_(50)=0.996 mg/m L),α-葡萄糖苷酶抑制活性(IC_(50)=191.71 g/m L)高于阳性对照阿卡波糖(IC_(50)=1 044.32 g/m L)。各提取物体外抗氧化和降血糖活性与其总黄酮含量呈正相关性,说明黄酮类化合物为影响其活性的主要因素。  相似文献   

12.
对芒果叶不同极性部位提取物的抗氧化活性进行研究。用DPPH法考察最优反应条件,综合评价其抗氧化活性,测定其黄酮含量,以IC50值作为评价清除DPPH自由基能力的指标,用芒果苷和抗坏血酸作为对照品进行自由基清除率的比较。试验结果表明:芒果叶石油醚、乙酸乙酯、正丁醇萃取物及水部位提取物的黄酮含量依次为:(33.616±3.208)、(292.063±1.100)、(180.469±2.067)、(21.717±1.157)mg/g,IC50值分别为:102.877、9.014、19.494、221.784μg/mL。由此可以看出,芒果叶各类提取物均具有一定的抗氧化活性,其中乙酸乙酯萃取物抗氧化活性最强,其次为正丁醇、石油醚,最后为水部位提取物。相关性分析结果表明,芒果叶各极性部位提取物的黄酮含量与清除DPPH自由基的能力呈负相关,芒果叶各部位提取物的黄酮含量是影响其抗氧化活性的主要因素。  相似文献   

13.
目的:研究豆腐柴提取物不同极性部位的体外抗氧化活性。方法:用甲醇提取豆腐柴减压浓缩后得豆腐柴提取物,依次用石油醚、三氯甲烷、乙酸乙酯、正丁醇萃取,得包括水相的五个不同极性部位,测定各极性部位的总多酚、总黄酮含量,比较各极性部位清除DPPH、ABTS、FRAP自由基的能力。结果:豆腐柴提取物的不同极性部位中乙酸乙酯相的总酚、总黄酮含量最高(总酚含量(635.935±6.529)mg GAE·g~(-1),总黄酮含量(953.018±21.774)mg QE·g~(-1)),各极性部位均提示有一定的抗氧化活性,且自由基清除力在一定范围呈显著的剂量效应关系,乙酸乙酯相与石油醚相、水相的抗氧化能力差异性较大(p0.01)。结论:豆腐柴提取物各极性部位都具有一定的抗氧化活性,可能与总酚、总黄酮含量有关,乙酸乙酯相抗氧化活性强于VC,可重点对该极性部位进一步分离纯化。  相似文献   

14.
采用DPPH法、ABTS法和FRAP法三种测定法对木瓜叶和木瓜果实体外抗氧化活性进行综合评价,并分析其总多酚与总黄酮含量与抗氧化活性的关系。结果表明:木瓜6个提取物中,木瓜叶乙酸乙酯部位清除ABTS自由基及还原Fe3+(IC50=6.66μg/mL,TEAC=1293.25μmol/g)最强,其中,清除ABTS自由基活性和阳性对照BHT(IC50=6.56μg/mL)相当,还原Fe3+能力低于BHT(TEAC=2503.17μmol/g);木瓜果实乙酸乙酯部位清除DPPH自由基(IC50=48.99μg/mL)能力最强,弱于阳性对照BHT(IC50=24.49μg/mL)。木瓜叶乙酸乙酯部位清除ABTS自由基及还原Fe3+的能力可能与其多酚、黄酮含量高有关,木瓜果实乙酸乙酯部位清除DPPH自由基的能力可能也与其多酚、黄酮含量高有关。  相似文献   

15.
采用乙酸乙酯、正丁醇、氯仿、石油醚对核桃仁皮多酚进行提取,通过清除DPPH自由基、OH自由基、ABTS自由基法与铁离子还原能力初步评价其体外抗氧化活性。结果表明,不同极性溶剂对核桃仁皮多酚提取能力为乙酸乙酯>正丁醇>氯仿>石油醚;乙酸乙酯提取物具有最强的DPPH自由基清除能力和ABTS自由基清除能力,其IC50值分别为5.004和29.654 μg/mL,其次为正丁醇(9.596、23.681 μg/mL)、氯仿提取物(62.719、144.475 μg/mL)以及石油醚提取物(48.316、146.424 μg/mL);正丁醇提取物具有最强的OH自由基清除能力,其IC50值为393.578 μg/mL,其次为乙酸乙酯(510.186 μg/mL)、氯仿提取物(627.003 μg/mL)与石油醚提取物(840.315 μg/mL);在铁离子还原能力实验中,当样品浓度均为100 μg/mL时,各提取物的吸光度为乙酸乙酯(0.821)>正丁醇(0.509)>氯仿(0.406)>石油醚(0.142)。总之,不同极性提取物其抗氧化能力有差异,依次为乙酸乙酯>正丁醇>氯仿>石油醚,且与质量浓度呈正相关。  相似文献   

16.
采用清除DPPH自由基、ABTS自由基和铁离子还原/抗氧化能力(tRAP)方法,评价开封产黄色菊花(春日剑山和麦浪)的体外总抗氧化活性,并将所测结果与水溶性维生素E(6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylicacid,Trolox)及阳性对照二丁基羟基甲苯(BHT)进行比较.结果发现,不同菊花的不同溶剂提取物抗氧化活性不同.随着提取溶刺极性的增大,同种菊花不同溶剂提取物总的抗氧化活性逐渐增大.即甲醇提取物)乙酸乙酯提取物)石油醚提取物.所有提取物中,麦浪甲醇提取物的抗氧化活性最好.它清除DPPH自由基的能力(IC_(50)=20.01mg/L)略低于BHT(IC_(50)=18.92mg/L),清除ABTS自由基的能力(IC_(50)=25.93mg/L)约为BHT(IC_(50)值为7.72mg/L)的1/3.  相似文献   

17.
目的:研究青砖茶提取物不同极性部位的体外抗氧化作用,初步探明其体外抗氧化作用及活性部位,同时将其开发成抗氧化性产品提供科学依据。方法:采用清除DPPH自由基(DPPH·)、清除ABTS自由基(ABTS·~+)及测定总还原能力3个体外指标来评价青砖茶提取物不同极性部位的抗氧化能力。结果:青砖茶提取物不同极性部位中清除DPPH·能力和测定的总还原能力排序一致,为乙酸乙酯层正丁醇层水提取物水层氯仿层;清除ABTS·~+能力为正丁醇层乙酸乙酯层水层水提取物氯仿层。结论:青砖茶具有体外抗氧化作用,其提取物不同极性部位的抗氧化活性以乙酸乙酯层和正丁醇层较强,水提取物和水层较弱,氯仿层很弱。  相似文献   

18.
玻璃海鞘不同极性提取物体外抗氧化活性的研究   总被引:1,自引:0,他引:1  
通过对DPPH自由基、脂质过氧化及总抗氧化能力的测定,从而探求玻璃海鞘不同极性提取物的抗氧化能力。结果表明,玻璃海鞘不同极性提取物均具有一定的抗氧化能力,但均低于VC的抗氧化能力。用IC50衡量清除自由基的能力,正丁醇萃取物清除DPPH自由基能力最强,为(1218.03±4.79)mg/L,其次是石油醚萃取物,乙酸乙酯萃取物最弱;乙酸乙酯萃取物对脂质过氧化的抑制作用最强,为(2325.17±3.80)mg/L,石油醚萃取物次之,正丁醇萃取物最弱;在一定浓度下,总抗氧化能力从强到弱排列顺序依次为石油醚萃取物>乙酸乙酯萃取物>正丁醇萃取物。  相似文献   

19.
目的:观察油茶籽壳不同溶剂提取物(乙酸乙酯、正丁醇、氯仿、水)体外抗氧化和抗肿瘤活性。方法:采用Folin-Ciocalteu和三氯化铝方法检测总酚及总黄酮含量;采用DPPH法和邻二氮菲-Fe2+氧化法测抗氧化活性;采用CCK-8法测细胞的活性。结果:油茶籽壳乙酸乙酯提取物、正丁醇提取物、氯仿提取物、水提取物总酚含量分别为79.25±4.552、51.81±3.651、2.762±0.523、19.73±1.191mg/g;总黄酮含量分别为26.73±0.613、15.63±1.126、13.16±0.672、5.734±0.761mg/g;油茶籽壳乙酸乙酯提取物、正丁醇提取物、氯仿提取物、水提取物在15.625~250μg/m L范围内体外抗氧化活性均具有剂量依赖性;对Hep G2细胞增殖抑制作用在62.5~250μg/m L范围内均具有剂量依赖性。结论:体外抗氧化活性和抗肿瘤活性强弱均表现为乙酸乙酯提取物正丁醇提取物水提取物氯仿提取物,其中乙酸乙酯是油茶籽壳提取的有效溶剂。  相似文献   

20.
薄荷不同溶剂提取物抗氧化活性的研究   总被引:1,自引:0,他引:1  
采用1,1-二苯基-2-三硝基苯肼(DPPH)、2,2'-联氮基双(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS)、Fe+还原法(FRAP)三种抗氧化模型对薄荷的水、甲醇、70%乙醇、正丁醇、乙酸乙酯五种提取物进行抗氧化活性评价,同时分析抗氧化活性与总酚和总黄酮含量的关系.结果表明,薄荷不同提取物均表现出良好的抗氧化活性,其抗氧化活性与多酚含量呈极显著相关,与黄酮含量相关性较小.其中,水提物对DPPH自由基清除率最高,EC50值为(0.53±0.04) mg/mL;甲醇提取物对ABTS自由基清除率最高,EC50值为(1.57±0.03) mg/mL;乙酸乙酯提取物的FRAP值最高为(4.73±0.03) mmol/g;水提物中总酚含量最高为(58.81±3.10) mg/g,甲醇提取物中总黄酮含量较高为(162.95±1.91) mg/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号