首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanical behavior of an alumina/NiCu laminate under thermal shock loading was investigated. The maximum thermal shock temperature was 1000°C. The laminate architecture was the cause of a basic change in the cracking mechanisms, manifested in a dramatic increase in the mechanical residual strength over that of monolithic alumina. The laminated system was constructed by alternating alumina layers coated with copper films with nickel interlayers and joining them by a combination of liquid-state (brazing) and solid-state (diffusion) bonding. The material system was tested by water quenching square-shaped laminated specimens initially at temperatures of up to 1000°C. Three-point bending tests revealed the mechanical strength before and after thermal shock, and SEM analysis described the damage mechanisms and the extent of debonding at the alumina/NiCu interfaces.  相似文献   

2.
Ablation behaviour of poly(hydridomethylsiloxane) derived open and closed porous structured SiOC ceramic foams was evaluated using oxy-acetylene flame at 1500 °C for various time durations. X-ray diffraction and scanning electron microscopy analyses of ablated SiOC ceramic foams revealed the formation of a thin protective SiO2 layer inhibiting further oxidation. The closed porous structured SiOC ceramic foams exhibited very low mass ablation rate in contrast to open porous structured SiOC ceramic foams owing to the differences in thermal energy dissipation mechanism. The feasibility of the plausible foam reduction reactions pertaining to the ablation mechanism was further investigated by computing the Gibbs energy and HR-TEM analysis. The study corroborated the significance of tailoring the microporous structured SiOC ceramic foams as potential thermal protection material for high temperature applications.  相似文献   

3.
Reticulated porous ceramics with structural features spanning across multiple length scales are emerging as the primary media in a variety of demanding mass and heat transfer applications, most notably solar-assisted synthetic fuel processing. In this study, we focus on engineering of the open pore silicon carbide (SiC)-based foams in such catalytic applications. We evaluate the mechanical integrity and thermal stability of these porous structures. X-ray tomography analyses of the 3D structures reveal the presence of dual pore size distribution different by up to an order of magnitude in length scale. We further study the effect of thermal shock—induced via water quenching—on the SiC structures and we conclude that the mechanical properties of the ceramic foams are significantly reduced after thermal stress. Comparison of SEM micrographs—before and after thermal shock—reveals that needle-like features appear inside the foam matrix. These elongated defects may be responsible for structural and mechanical weakening.  相似文献   

4.
Using monolithic alumina ceramics as the reference, the thermal shock behavior of the hot-pressed alumina matrix ceramics with 3 mol% neodymium titanate was investigated. The thermal shock resistance of the materials was evaluated by water quenching and a subsequent three-point bending test to determine the flexural strength degradation. The hot-pressed composite exhibited a temperature differential of the thermal shock resistance 120°C higher than the monolith, mainly because of significantly improved fracture toughness.  相似文献   

5.
The thermal shock resistance of sintered Al2O3/1, 2.5, and 5 vol% SiC nanocomposites was studied using two indentation techniques. In the first technique, "indentation thermal shock" measurements were made of the extension of median/radial cracks around Vickers indentations after quenching from various temperatures (up to 480°C) into a bath of boiling water. This technique allowed a critical thermal shock temperature, Δ T CInd, to be quantitatively evaluated. In the second technique, "indentation fatigue" tests were conducted on the thermally shocked specimens; repeated indentations were made at the same site, and the number of load cycles needed to initiate lateral fracture was measured. The results showed that nanocomposites with an addition of SiC nanophase as low as 1 vol% had a thermal shock resistance superior to that of pure Al2O3.  相似文献   

6.
Thermal-shock fracture behavior of yttria-doped tetragonal zirconia polycrystals (Y-TZP) of various grain sizes was evaluated by the quenching method using water as the quenching solvent. The tetragonal-to-monoclinic phase transformation behavior of Y-TZP around cracks introduced by thermal stress was investigated by using Raman microprobe spectroscopy. The critical quenching temperature difference (Δ T c ) of Y-TZP ceramics increased from 250° to 425°C with increasing grain size of zirconia from 0.4 to 3.0 μm, while the fracture strength decreased from 900 to 680 MPa. The improvement of Δ T c of Y-TZP with increasing grain size of zirconia corresponded with the quantity of tetragonal-to-monoclinic phase transformation around cracks introduced by thermal stress.  相似文献   

7.
Silicon Oxycarbide Ceramic Foams from a Preceramic Polymer   总被引:6,自引:0,他引:6  
Open-cell ceramic foams were obtained from the pyrolysis, at 1000° to 1200°C under nitrogen, of a preceramic polymer (a silicone resin) and blown polyurethanes. The morphology of the expanded polyurethane was reproduced in the final architecture of the ceramic foam. The foams produced in this way consisted of an amorphous silicon oxycarbide ceramic (SiOC), having a bulk density ranging from 0.1 to 0.4 g/cm3 and variable cell size (300 to 600 µm). Young's modulus ranged from 20 to 170 MPa, and the compression strength from 1 to 5 MPa. The foams displayed excellent dimensional stability up to their pyrolysis temperature.  相似文献   

8.
A water-quenching technique was used to evaluate the thermal-shock strength behavior of silicon nitride (Si3N4) ceramics in an air atmosphere. When the tensile surface was shielded from air during the heating and soaking process, the quenched specimens showed a gradual decrease in strength at temperatures above 600°C. However, the specimens with the air-exposed surface exhibited a ∼16% and ∼29% increase in strength after quenching from 800° and 1000°C, respectively. This is because of the occurrence of surface oxidation, which may cause the healing of surface cracks and the generation of surface compressive stresses. As a result, some preoxidation of Si3N4 components before exposure to a thermal-shock environment is recommended in practical applications.  相似文献   

9.
This article reports on an experimental investigation of the dewatering process of cement-free high-alumina refractory castables. Simultaneous fluid dynamic, thermal, and mass loss effects were investigated during the removal of physically absorbed water at temperatures of 25° to 700°C. The release of steam was decisively affected by the castable's permeability level and the heating rate applied. The analysis of fluid dynamics revealed that at 1°C/min, the main bulk of physical water was released as steam under saturated conditions at 100°C. However, at 5°C/min, steam was trapped within the pores, and water loss was chaotically released and shifted to higher temperatures. Thermal analysis showed that the endothermic boiling of water may result in a critical thermal shock in the castable's structure. Both steam entrapment and thermal shock were more severe with the reduction in the castable's permeability level.  相似文献   

10.
A process for the production of SiOC ceramic foams has been for the first time developed through melt foaming of a siloxane preceramic polymer with the help of a blowing agent, followed by pyrolysis under an inert atmosphere. The raw material consisted of a methylsilicone resin, a catalyst (which accelerated the cross-linking reaction of the silicone resin) and a blowing agent (which generated gas above 210°C). Methylsilicone resin foams were obtained through controlling the melt viscosity around 210°C, temperature where the blowing agent started to decompose, by varying the initial molecular weight of the preceramic polymer and the amount of the catalyst. The obtained SiOC ceramic foams exhibited excellent oxidation stability up to 1000°C, as shown by thermal gravimetric analysis (TGA). As expected, the mechanical properties of the SiOC ceramic foams varied as a function of their bulk density, possessing a flexural strength up to 5.5 MPa and a compression strength up to 4.5 MPa. The main steps in the process, namely foaming and pyrolysis, were analyzed in detail. The viscosity change was analyzed as a function of temperature by the dynamic shear measurement method. The pyrolysis process of foams was analyzed by TGA coupled with infrared spectroscopy (IR).  相似文献   

11.
《Ceramics International》2020,46(5):5594-5601
Highly porous polymer-derived SiCN(O) and SiOC ceramics with low thermal conductivity were developed by replicating polyurethane (PU) foams. The PU templates were impregnated with polysilazane or polysiloxane precursor, followed by pyrolysis at different temperatures (1200 °C - 1500 °C) yielding SiCN(O) or SiOC ceramic foams, respectively. The swelling and cross-linking behavior of the used precursors had a significant impact on the morphology of the prepared foams. The samples had bulk densities ranging from 0.03 g.cm-3 to 0.56 g.cm-3 and a total porosity in the range from 75 to 98 vol%. Fourier transform infrared (FT-IR), Raman spectroscopy, X-ray diffraction (XRD) were employed to follow the structural evolution together with morphological characterization by scanning electron microscopy (SEM). The obtained ceramics were thermally stable up to 1400 °C, and the linear thermal expansion coefficient values of the porous SiCN(O) and SiOC components in the temperature range from 30 to 850 °C were found to be ~1.72 x 10-6.K-1 and ~1.93 x 10-6.K-1, respectively. Thermal conductivity (λ) as low as 0.03 W.m-1 K-1 was measured for the SiCN(O) and SiOC foams at room temperature (RT). The λ of the ceramic struts were also assessed by using the Gibson-Ashby model and estimated to be 2.1 W.m-1 K-1 for SiCN(O), and 1.8 W.m-1 K-1 for SiOC.  相似文献   

12.
Polymer-derived SiOC/ZrO2 ceramic nanocomposites have been prepared using two synthetic approaches. A commercially available polymethylsilsesquioxane (MK Belsil PMS) was filled with nanocrystalline zirconia particles in the first approach. The second method involved the addition of zirconium tetra( n -propoxide), Zr(OnPr)4, as zirconia precursor to polysilsesquioxane. The prepared materials have been subsequently cross-linked and pyrolyzed at 1100°C in argon atmosphere to provide SiOC/ZrO2 ceramics. The obtained SiOC/ZrO2 materials were characterized by means of X-ray diffraction, elemental analysis, Raman spectroscopy as well as transmission electron microscopy. Furthermore, annealing experiments at temperatures from 1300° to 1600°C have been performed. The annealing experiments revealed that the incorporation of ZrO2 into the SiOC matrix remarkably increases the thermal stability of the composites with respect to crystallization and decomposition at temperatures exceeding 1300°C. The results obtained within this study emphasize the enormous potential of polymer-derived SiOC/ZrO2 composites for high-temperature applications.  相似文献   

13.
WC–Co composites are widely used as cutting or drilling tools because of their high hardness, strength, and fracture toughness. The working temperature is generally in the range of 300° to 700°C, so thermal shock fracture of WC–Co can occur if the parts are suddenly cooled. In this study, changes in fracture strength and fracture toughness after thermal shock were observed.  相似文献   

14.
Silicon oxycarbide (SiOC) ceramic foams, produced by the pyrolysis of a foamed blend of a methylsilicone preceramic polymer and polyurethane (PU) in a 1/1 wt.% ratio, exhibit excellent physical and mechanical properties. The proposed process allows to easily modify the density and morphology of the foams, making them suitable for several engineering applications. However, it has been shown that, due to residual carbon present in the oxycarbide phase after pyrolysis, the foams are subjected to an oxidation process that reduces their strength after high temperature exposure to air (12 h 1200°C). A modified process, employing the same silicone resin preceramic polymer but a much lower PU content (silicone resin/PU=5.25/1 wt.% ratio), has been developed and is reported in this paper. Microstructural investigations showed that carbon rich regions deriving from the decomposition of the polyurethane template are still present in the SiOC foam, but have a much smaller dimension than those found in foams with a higher PU content. Thermal gravimetric studies performed in air or oxygen showed that the low-PU containing ceramic foams display an excellent oxidation resistance, because the carbon-rich areas are embedded inside the struts or cell walls and are thus protected by the dense silicon oxycarbide matrix surrounding them. SiOC foams obtained with the novel process are capable to maintain their mechanical strength after oxidation treatments at 800 and 1200°C (12 h), while SiOC foams obtained with a higher amount of PU show about a 30% strength decrease after oxidation at 1200°C (12 h).  相似文献   

15.
Polysiloxane loaded with SiC as inert filler, and Al as active filler, was pyrolyzed in nitrogen to fabricate SiOC composites, and the processing and properties of the filled SiOC composites were investigated. Adding SiC fillers could reduce the linear shrinkage of filler-free cured polysiloxane in order to obtain monolithic SiC/SiOC composites. The flexural strength of SiC/SiOC composites reached 201.3 MPa at a SiC filler content of 27.6 vol.%. However, SiC/SiOC composites exhibited poor oxidation resistance, thermal shock resistance and high temperature resistance. Al fillers could react with hydrocarbon generated during polysiloxane pyrolysis at 600 °C and N2 at 800 °C to form Al4C3 and AlN, respectively. The volume expansions resulting from these two reactions were in favor of the reduction in linear shrinkage and the improvement in flexural strength of SiC/SiOC composites. The flexural strength of Al-containing SiC/SiOC composites was 1.36 times that of SiC/SiOC composites without Al at an Al filler content of 20 vol.%. The addition of Al fillers remarkably improved the high temperature resistance and oxidation resistance of SiC/SiOC composites, but not thermal shock resistance.  相似文献   

16.
In this investigation, a multilayered, multimaterial system with strong interface subjected to thermal shock loading was analyzed. The analysis was based on a one-dimensional spatio-temporal finite difference scheme of the temperature field, and the thermal residual stresses and zero misfit stress temperature were considered. Using a failure criterion based on crack initiation, the number of broken layers due to thermal shock and residual mechanical strength at room temperature could be predicted. Furthermore, the room temperature residual strength of the laminate as a function of thermal shock temperature was constructed, demonstrating steplike behavior. Using this model, the mechanical behavior of the alumina/NiCu laminate system subjected to thermal shock loading of up to 1000°C was predicted. The model revealed the superiority of this material system over monolithic ceramics under thermal shock conditions.  相似文献   

17.
Thermal Shock Behavior of Open-Cell Ceramic Foams   总被引:2,自引:0,他引:2  
Specimens of heated, open-cell ceramics were thermally shocked by immersion in water or oil. It was found the strength retained after thermal shock underwent a gradual decrease with increasing quench temperature, indicative of a cumulative damage mechanism which manifests itself with increasing thermal stress. This damage could also be monitored using measurements of the elastic constants before and after quenching. The thermal shock resistance of the open-cell materials was found to be strongly dependent on cell size (increased with increasing cell size) and weakly dependent on density (increased with increasing density). Two possible sources of thermal stress were considered; one was associated with the temperature gradient across the microscopic struts and the other with the heating of the quenching medium as it infiltrates the cellular structure. Such heating was confirmed and it was concluded that this was the dominant source of thermal stress in this particular study, controlling the thermal stress in this particular study, controlling the thermal shock resistance of the open-cell ceramics.  相似文献   

18.
Sol–gel-derived SiOC ceramics are metastable glasses that undergo microstructural modifications upon annealing at temperatures exceeding 1000°C. Typically, silicon-rich SiOC compounds show the presence of a low volume fraction of silicon and silicon carbide nanocrystals upon exposure to 1200°C. Here, the microstructural changes occurring in a Si-rich SiOC composition after long-term annealing experiments performed at 1300°C for 1, 10, and 100 h were investigated by high-resolution (HRTEM) and energy-filtered transmission electron microscopy (EFTEM), in order to characterize the size evolution of the Si precipitates. The elemental maps obtained through EFTEM analysis indicate that the nanocrystals grow as a function of the annealing time according to the classical mechanism of Ostwald ripening. The estimated diffusion constant of silicon in the SiOC matrix is on the order of 7 × 10−17 cm2/s.  相似文献   

19.
The thermal stability and the kinds of products of thermal decomposition of polyurethane foams modified with urea or oxamide and borate groups were studied. Incorporation of urea or oxamide groups and borate groups enhances the thermal stability of polyurethane foams compared to polyurethane foams based on typical polyols. Thermal stability of foams modified with oxamide groups is somewhat higher that of foams modified with urea groups. In turn, simultaneous incorporation of borate groups results in an increase in thermal stability of the foams modified with urea. The temperature of thermal decomposition of the foams with oxamide and borate groups does not change or undergoes a slight decrease. The thermal degradation products of investigated foams are similar and they are usually water, ammonia, carbon dioxide and/or nitrous oxide. Additionally, hydrogen cyanide can be released during thermal decomposition of polyurethane foams modified with urea groups. The presence of borate groups prevents the formation of hydrogen cyanide. The opposite situation is observed in the case of the foams modified with oxamide and borate groups. Thus, from the point of view of a fire hazard, the use of the foams modified with urea and borate groups is safer. © 2017 Society of Chemical Industry  相似文献   

20.
Thermal Shock Behavior of Porous Silicon Carbide Ceramics   总被引:1,自引:0,他引:1  
Using the water-quenching technique, the thermal shock behavior of porous silicon carbide (SiC) ceramics was evaluated as a function of quenching temperature, quenching cycles, and specimen thickness. It is shown that the residual strength of the quenched specimens decreases gradually with increases in the quenching temperature and specimen thickness. Moreover, it was found that the fracture strength of the quenched specimens was not affected by the increase of quenching cycles. This suggests a potential advantage of porous SiC ceramics for cyclic thermal-shock applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号