首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to solve the problem of large overpotential in water electrolysis for hydrogen production, transition metal sulfides are promising bifunctional electrocatalysts for hydrogen evolution reaction/oxygen evolution reaction that can significantly reduce overpotential. In this work, Ni3S2 and amorphous MoSx nanorods directly grown on Ni foam (Ni3S2-MoSx/NF) were prepared via one-step solvothermal process, which were used as a high-efficient electrocatalyst for overall water splitting. The Ni3S2-MoSx/NF composite exhibits very low overpotentials of 65 and 312 mV to reach 10 mA cm−2 and 50 mA cm−2 in 1.0 M KOH for HER and OER, respectively. Besides, it exhibits a low Tafel slope (81 mV dec−1 for HER, 103 mV dec−1 for OER), high exchange current density (1.51 mA cm−2 for HER, 0.26 mA cm−2 for OER), and remarkable long-term cycle stability. This work provides new perspective for further the development of highly effective non-noble-metal materials in the energy field.  相似文献   

2.
Seawater electrolysis has become an efficient method which makes full use of natural resources to produce hydrogen. However, it suffers high energy cost and chloride corrosion. Herein, we first present a Ni2P/Co(PO3)2/NF heterostructure in which Co(PO3)2 with the nano-rose morphology in-situ grown on the rough Ni2P/NF. The unique 3D nano-rose structure and the optimized electronic structure of the heterostructure enable Ni2P/Co(PO3)2/NF super-hydrophilic and super-aerophobic characteristics, and highly facilitate hydrogen evolution reaction (HER) kinetics in alkaline fresh water, alkaline seawater and even industrial wastewater at large current density, which is rarely reported. Significantly, at large current densities, Ni2P/Co(PO3)2/NF only requires overpotentials of 217 and 307 mV for HER to achieve 1000 mA cm−2 in alkaline fresh water and alkaline seawater, respectively, and requires an overpotential of 469 mV for HER to deliver 500 mA cm−2 in industrial wastewater. Furthermore, the overall seawater splitting system in the two-electrode electrolyzer only requires voltage of 1.98 V to drive 1000 mA cm−2, which also demonstrates significant durability to keep 600 mA cm−2 for at least 60 h. This study opens a new avenue of designing high efficiency electrocatalysts for hydrogen production at large current densities in alkaline seawater and industrial wastewater.  相似文献   

3.
In targeting the most important energy and environmental issues in current society, the development of low-cost, bifunctional electrocatalysts for urea-assisted electrocatalytic hydrogen (H2) production is an urgent and challenging task. In this work, interlaced rosette-like MoS2/Ni3S2/NiFe-layered double hydroxide/nickel foam (LDH/NF) is successfully synthesized by a two-step hydrothermal reaction. Due to its unique interlaced heterostructure, MoS2/Ni3S2/NiFe-LDH/NF exhibits excellent bifunctional catalytic activity towards the urea oxidation reaction (UOR) and the hydrogen evolution reaction (HER) in 1.0 M KOH with 0.5 M urea. In a concurrent two-electrode electrolyser (MoS2/Ni3S2/NiFe-LDH/NF(+,-)), only voltage of 1.343 V is required to reach 50 mA cm−2, which is 216 mV lower than for pure water splitting. Furthermore, after 16 h of urea electrolysis in 1.0 M KOH with 0.5 M urea, the current density remains at 98% of the original value. Thus, the catalyst is not only favorable for H2 production, but also has great significance for the problem of urea-rich wastewater treatment.  相似文献   

4.
In recent years, the exploration of efficient and stable noble-metal-free electrocatalysts is becoming increasingly important, used mainly for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this work, a new ultrathin porous Cu1-xNixS/NF nanosheets array was constructed on the 3D nickel skeleton by two-step method: hydrothermal method and vulcanization method. Through these two processes, Cu1-xNixS/NF has a larger specific surface area than that of foamed nickel (NF) and Cu1-xNixO/NF. The Cu1-xNixS/NF materials show excellent catalytic activity by accelerating the electron transfer rate and increase the amount of H2 and O2 produced. The lower overpotential was obtained only 350 mV at 20 mA cm−2 for OER, not only that, but also the same phenomenon is pointed out in HER, optimal Cu1-xNixS/NF presents low overpotentials of 189 mV to reach a current density of 10 mA cm−2 in 1.0 M KOH for HER. Both OER and HER shows a lower Tafel slope: 51.2 mV dec−1 and 127.2 mV dec−1, subsequently, the overall water splitting activity of Cu1-xNixS/NF was investigated, and the low cell voltage was 1.64 V (current density 10 mA cm−2). It can be stable for 14 h during the overall water splitting reaction. These results fully demonstrate that Cu1-xNixS/NF non-precious metal materials can be invoked become one of the effective catalysts for overall water splitting, providing a richer resource for energy storage.  相似文献   

5.
The urea solution electrolysis has become more attractive than water splitting, because it not only produces clean H2 via the cathodic hydrogen evolution reaction (HER) with lower cell voltage, but also treats sewage containing urea through anodic urea oxidation reaction (UOR). However, lack of efficient electrocatalysts for HER and UOR has limited its development. Herein, hairy sphere -like Ni9S8/CuS/Cu2O composites were synthesized on nickel foam (NF) in situ by a two-step hydrothermal method. The Ni9S8/CuS/Cu2O/NF exhibited good electrocatalytic activity for both HER (?0.146 V vs. RHE to achieve 10 mA cm?2) and UOR (1.357 V vs. RHE to achieve 10 mA cm?2). Based on the bifunctional properties of Ni9S8/CuS/Cu2O/NF, a dual-electrode urea solution electrolytic cell was constructed, which only needed a low voltage of 1.47 V to reach a current density of 10 mA cm?2, and displayed a good stability during a 20-h test. In addition, the reason for the good catalytic activity of Ni9S8/CuS/Cu2O/NF was analyzed and the UOR mechanism was discussed in detail. Our research shows that Ni9S8/CuS/Cu2O/NF is a very promising low-cost dual-function electrocatalyst, which can be used for high-efficiency electrolysis of urea solution to produce hydrogen and treat wastewater.  相似文献   

6.
It is crucial for the storage and conversion of hydrogen energy to substitute the low theoretical potential of urea oxidation reaction (UOR) for the high theoretical potential of anodic water electrolysis (oxygen evolution reaction (OER)). In this paper, it puts forward a brief and scalable strategy, so as to synthesize a novel bifunctional nickel-iron layered double hydroxide and multi-walled carbon nanotube composites supported on Ni foam, represented as NiFe-LDH/MWCNTs/NF. Electrochemical measurements demonstrate that NiFe-LDH/MWCNTs/NF is able to realize an efficient electrocatalysis for UOR. During this process, merely a potential of 1.335 V is needed at 10 mA cm−2, which can be taken to replace OER, thus reducing overpotential in H2-production as well as power consumption. In addition, NiFe-LDH/MWCNTs/NF also exhibits electro-defense electrocatalytic efficiency to achieve the reaction of hydrogen evolving process, which provides a low overpotential of 98 mV at 10 mA cm−2. To further prove it, all-water-urea electrolysis measurement is carried out in 1 M KOH and 0.5 M Urea with NiFe-LDH/MWCNTs/NF as cathode and anode respectively. NiFe-LDH/MWCNTs/NF||NiFe-LDH/MWCNTs/NF electrode manages to provide 10 mA cm−2 at a voltage of merely 1.507 V, 156 mV lower than that of water splitting, which proves its commercial viability in energy-saving hydrogen production.  相似文献   

7.
Reasonable design and preparation of non-noble metal electrocatalysts with predominant catalytic activity and long-term stability for oxygen evolution reaction (OER) are essential for electrocatalytic water splitting. Ni foam (NF) is highlighted for its 3D porous structure, impressive conductivity and large specific surface area. Herein, nano/micro structured dendritic cobalt activated nickel sulfide grown on 3D porous NF (Co–Ni3S2/NF) has been successfully synthesized by one-step hydrothermal method. Due to the ingenious incorporation of Co, Co–Ni3S2/NF electrode shows auspicious electrocatalytic performance for OER compared with Ni3S2/NF electrode. As a result, Co–Ni3S2/NF needs overpotential of only 274 and 459 mV at current density of 10 and 50 mA cm−2, respectively, while Ni3S2/NF requires overpotential of 344 and 511 mV. At potential of 2.0 V (vs. RHE), Co–Ni3S2/NF displays current density of 191 mA cm−2, while Ni3S2/NF just attains current density of only 135 mA cm−2. Moreover, Co–Ni3S2/NF demonstrates excellent stability for uninterrupted OER in alkaline electrolyte. The strategy of designing and preparing cobalt activated nickel sulfide grown on NF renders a magnificent prospect for the development of metal-sulfide-based oxygen evolution catalysts with excellent electrocatalytic performances.  相似文献   

8.
The exploration of catalysts with high activity and low cost for water splitting is still necessary. Herein, a nanowire-like morphology CoO/NF electrode is synthesized using facile hydrothermal reaction and calcination treatment. The urea can regulate its morphology during the synthetic process of CoO/NF. Electrochemical studies reveal that the as-obtained CoO/NF exhibits excellent electrocatalytic performance with overpotential of 307 mV at current density of 10 mA cm−2 and Tafel slope of 72 mV dec−1 for oxygen evolution reaction, and CoO/NF delivers current density of 10 mA cm−2 at overpotential of 224 mV for hydrogen evolution reaction. The results of the oxygen evolution reaction stability show that the overpotential of CoO/NF electrode is only increased by 4 mV at current density of 10 mA cm−2. The two-electrode water splitting with CoO/NF electrodes as both anode and cathode needs a cell potential of 1.76 V to reach 10 mA cm−2. Therefore, this simple method to prepare CoO/NF electrode can enhance the properties of electrocatalysts, which makes CoO/NF a promising material to replace noble metal-based catalysts.  相似文献   

9.
In this work, many kinds of V doped Co(OH)2 electrodes were in situ synthesized on Ni foam by a one-step typical hydrothermal process. It is worth noting that the phase transition composition of the V doped Co(OH)2 material can be modulated by the difference of the amount of the V introduced. Different crystal phase compositions show different water oxidation activities. It is worth noting that the V2–Co(OH)2/NF electrode shows better oxygen evolution performance (Overpotential of 320 mV@50 mA cm−2) compared with Co(OH)2/NF (450 mV@50 mA cm−2), V1–Co(OH)2/NF (340 mV@50 mA cm−2) and V3–Co(OH)2/NF (350 mV@50 mA cm−2) electrodes. The experimental results show that not all doping can improve the electrochemistry performance of electrodes, such as the oxidation of urea. Density functional theory calculation further proves that the doping of the V is favorable to the adsorption of water and inhibits the adsorption of urea. This study provides a new idea for the development of efficient overall water splitting catalysts.  相似文献   

10.
Efficient and sustainable Janus catalysts toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are highly desirable for future hydrogen production via water electrolysis. Herein we report an active Janus electrocatalyst of amorphous-crystalline cobalt-molybdenum bimetallic phosphide heterostructured nanosheets on nickel foam (CoMoP/CoP/NF) for efficient electrolysis of alkaline water. As-reported CoMoP/CoP/NF consists of amorphous bimetal phosphide nanosheets doped with crystalline CoMoP/CoP heterostructured nanoparticles on NF. It can efficiently catalyze both HER (η = 127 mV@100 mA cm?2) and OER (η = 308 mV@100 mA cm?2) in alkaline electrolyte with long-term durability. Serving as anode and cathode of water electrolyzer, CoMoP/CoP/NF generates electrolytic current of 10, 50 and 100 mA cm?2 at low voltage of 1.50, 1.59, and 1.67 V, respectively.  相似文献   

11.
In this paper, we report the three-dimensional self-supported CoMoO4 nanosheet clusters on the nickel foam (denoted as CoMoO4/NF) by a facile hydrothermal-calcination method for efficient hydrogen generation. As a result, the freestanding CoMoO4 electrode exhibits an efficient electrochemical activity towards hydrogen evolution reaction, showing overpotentials as low as 68 and 178 mV at current densities of 10 and 100 mA cm−2 in the alkaline condition (1 M KOH), respectively, a Tafel slope value of 82 mV per decade. Moreover, the electrode exhibits remarkable electrochemical durability for 1000 cycles. Significantly, the water splitting electrolyzer assembled with CoMoO4/NF || NiFe LDH/NF (the nickel iron layered double hydroxide supported on the nickel foam) system achieved 20 mA cm−2 at 1.63 V, showing the CoMoO4/NF is promising for practical water splitting applications.  相似文献   

12.
High-activity and cost-effective transition metal sulfides (TMSs) have attracted tremendous attention as promising catalysts for hydrogen evolution reaction (HER). However, a significant challenge is the simultaneous construction of abundant electrochemical active sites and the fast electronic transmission path to boost a high-efficient HER. Herein, we demonstrate a facile one-step hydrothermal preparation of MoS2 hollow nanospheres decorating Ni3S2 nanowires supported on Ni foam (NF), without any other additional template, surfactant or annealing. In this three-dimensional (3D) heterostructure, the ultrathin-layered MoS2 hollow nanospheres contribute to the promotion of the total surface area and the electrochemical active sites. Meanwhile, the Ni3S2 nanowires are beneficial to the high electrical conductivity. Consequently, the optimized MoS2/Ni3S2/NF-200-24 electrocatalyst presents an extremely superior HER activity to that of individual MoS2/NF and Ni3S2/NF. The HER overpotentials are 85 mV at 10 mA cm−2 and 189 mV at 100 mA cm−2, which are also comparable with the state-of-the-art 20% Pt/C/NF electrode at both low and high current.  相似文献   

13.
Water splitting is an efficient strategy to produce purity hydrogen and convert intermittent electricity from renewable wind and solar sources. In this work, dense NiMoO4 micro-pillars arrays (MPAs) were in-situ grown on nickel foam (NF) through facile hydrothermal method, then the NiMoO4/NF were converted into NiMoO4–P/NF and NiFe/NiMoO4/NF via phosphating and electrodeposition method, respectively. The NiMoO4–P/NF electrode required small overpotentials of 34 mV@10 mA cm−2 and 130 mV@100 mA cm−2 for hydrogen evolution reaction (HER). The NiFe/NiMoO4/NF electrode exhibited excellent oxygen evolution reaction (OER) activity with overpotentials of 210 mV@10 mA cm−2 and 300 mV@100 mA cm−2. The overall water splitting using the anode-cathode couple of NiFe/NiMoO4/NF||NiMoO4–P/NF only consumes low voltages of 1.47 V@10 mA cm−2 for 100 h and 1.66 V@100 mA cm−2 for 50 h in 1 M KOH. The electronic modification and the well-designed hierarchical structure contribute the high energy-efficient and stabile overall water splitting.  相似文献   

14.
Searching for efficient, stable and low-cost nonprecious catalysts for oxygen and hydrogen evolution reactions (OER and HER) is highly desired in overall water splitting (OWS). Herein, presented is a nickel foam (NF)-supported MoS2/NiFeS2 heterostructure, as an efficient electrocatalyst for OER, HER and OWS. The MoS2/NiFeS2/NF catalyst achieves a 500 mA cm−2 current density at a small overpotential of 303 mV for OER, and 228 mV for HER. Assembled as an electrolyzer for OWS, such a MoS2/NiFeS2/NF heterostructure catalyst shows a quite low cell voltage (≈1.79 V) at 500 mA cm−2, which is among the best values of current non-noble metal electrocatalysts. Even at the extremely large current density of 1000 mA cm−2, the MoS2/NiFeS2/NF catalyst presents low overpotentials of 314 and 253 mV for OER and HER, respectively. Furthermore, MoS2/NiFeS2/NF shows a ceaseless durability over 25 h with almost no change in the cell voltage. The superior catalytic activity and stability at large current densities (>500 mA cm−2) far exceed the benchmark RuO2 and Pt/C catalysts. This work sheds a new light on the development of highly active and stable nonprecious electrocatalysts for industrial water electrolysis.  相似文献   

15.
Industrial electrolysis of water is one of the effective strategies for green hydrogen production in the future. Nevertheless, the large-scale applications of water electrolysis are still intractable issues hindered by the high overpotentials and inferior reaction kinetics on the anode. Herein, a facile one-step hydrothermal method was applied to in situ growth the Fe and V co-doped Ni3S2 electrocatalyst on nickel foam substrate (Fe, V–Ni3S2/NF). In 1 M KOH electrolyte, the as-prepared Fe, V–Ni3S2/NF electrode exhibited an improved water oxidation activity with ultralow overpotentials of 253 and 370 mV to realize large current densities of 100 and 1000 mA/cm2, respectively. More importantly, the Fe, V–Ni3S2/NF electrode existed an activation process during 100 h chronopotentiometry testing period. Detailed characterizations revealed that elements of V and S in the electrocatalyst were oxidized and dissolved into the electrolyte, making the electrocatalyst undergo surface reconstruction and resulting in a faster kinetic reaction rate, thus leading to enhanced oxygen evolution reaction activities. Collectively, the resultant Fe, V–Ni3S2/NF in this work provides new cogitation towards design and synthesis of low-cost electrocatalyst with large current densities for water oxidation.  相似文献   

16.
Binder-free NiFe-based electrocatalyst with aligned pore channels has been prepared by freeze casting and served as a bifunctional catalytic electrode for oxygen and hydrogen evolution reaction (OER and HER). The synergistic effects between Ni and Fe result in the high electrocatalytic performance of porous NiFe electrodes. In 1.0 M KOH, porous Ni7Fe3 attains 100 mA cm−2 at an overpotential of 388 mV with a Tafel slope of 35.8 mV dec−1 for OER, and porous Ni9Fe1 exhibits a low overpotential of 347 mV at 100 mA cm−2 with a Tafel slope of 121.0 mV dec−1 for HER. The Ni9Fe1//Ni9Fe1 requires a low cell voltage of 1.69 V to deliver 10 mA cm−2 current density for overall water splitting. The excellent durability at a high current density of porous NiFe electrodes has been confirmed during OER, HER and overall water splitting. The fine electrocatalytic performances of the porous NiFe-based electrodes owing to the three-dimensionally well-connected scaffolds, aligned pore channels, and bimetallic synergy, offering excellent charge/ion transfer efficiency and sizeable active surface area. Freeze casting can be applied to design and synthesize various three-dimensionally porous non-precious metal-based electrocatalysts with controllable multiphase for energy conversion and storage.  相似文献   

17.
Alkaline solution is considered to be more suitable for industrial application of hydrogen production by water electrolysis. However, most of the low-cost electrocatalyts such as Ni3S2 has poor ability to dissociate HO–H, resulting in unsatisfied hydrogen evolution performance in alkaline media. In this paper, a novel vermicular structure of Ni3S2–Ni(OH)2 hybrid have been successfully prepared on nickel foam substrate (v-Ni3S2–Ni(OH)2/NF) through a facile two-step containing hydrothermal and electrodeposition processes. The heterostructure consists of rod-like Ni3S2 and Ni(OH)2 nanosheets, in which Ni(OH)2 is coated on the surface of Ni3S2. This structure not only constructs a fast electron transfer channel but also possesses rich heterointerface, thus accelerating the Volmer step and allowing more active sites of Ni3S2 to functioning well. As a result, v-Ni3S2–Ni(OH)2/NF exhibited excellent electrocatalytic activity toward HER in 1.0 M KOH solution. It only needs 78 mV and 137 mV to drive current density of 10 mA cm−2 and 100 mA cm−2. Moreover, the catalytic stability of this electrocatalyst in alkaline solution is also satisfactory.  相似文献   

18.
Replacing dynamics-restricted oxygen evolution reaction (OER) with smart urea oxidation reaction (UOR) is very important for reducing the power consumption for hydrogen production. Here, the Co3Mo3N-400/NF is prepared using a facial way, which exhibits remarkable catalytic performances for UOR, hydrogen evolution reaction (HER) and overall urea electrolysis (OUE) because of the more exposed active sites and high electrical conductivity. At 100 mA/cm2, the Co3Mo3N-400/NF shows a small potential of 1.356 V vs. RHE (reversible hydrogen electrode) for UOR, which is much lower than that for OER. Furthermore, for HER, to reach to 100 mA/cm2, a low overpotential of 299 mV is required, and the urea has negligible influence on the HER process. For OUE, the Co3Mo3N-400/NF||Co3Mo3N-400/NF shows a small cell potential of 1.481 V at 100 mA/cm2 along with a good durability. Our work provides more choice for future OUE to generate hydrogen.  相似文献   

19.
Water electrolysis for producing hydrogen is considered to be the most feasible means to develop new green energy. Compared with above, urea electrolysis can improve energy conversion efficiency by introducing urea, and can also be used for purification of wastewater rich in urea. In this paper, a bifunctional electrocatalyst with heterostructure, namely Fe7Se8@Fe2O3 nanosheets supported on nickel foam, were synthesized for the first time through typical hydrothermal and partial oxidation processes. Iron cation promotes electron transfer and adjusts electron structure under the synergistic action of selenium and oxygen anion, thus achieving excellent catalytic activity of urea electrolysis. In an alkaline solution of 1 M KOH with 0.5 M urea, the Fe7Se8@Fe2O3/NF catalyst can drive the current density of 10 mA cm?2 with requiring only potential of 1.313 V and overpotential of 141 mV for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER), respectively. What is noteworthy is that Fe7Se8@Fe2O3/NF heterostructure is used as bifunctional electrocatalyst to form urea electrolyzer device, which only needs potential of 1.55 V to drive current density of 10 mA cm?2, which is one of the best catalytic activities reported so far, and the electrode couple showed remarkable stability for 15 h. Density functional theory shows that the Fe7Se8@Fe2O3/NF material exhibits the minimum Gibbs free energy for the adsorption of hydrogen. This work provides a new method for exploring novel and environmentally friendly bifunctional electrocatalysts for urea electrolysis.  相似文献   

20.
A new hybrid catalyst based on Ni foam (NF) and FeSe was prepared by a facial hydrothermal method, in which Se-decorated NF was subsequently electrochemically doped by Fe. Binder-free catalyst containing electrodes were directly tested for the hydrogen and oxygen evolution reaction (HER/OER). The FeSe/NF electrode displayed an OER current density of 100 mA cm−2 at potential of 1.42 V, and a relatively small Tafel slope of 109 mV dec−1 in a 1 M KOH solution. Also, FeSe/NF electrode exhibited reasonable HER overpotential of 200 mV at 10 mAcm−2 current density with Tafel slope of 145 mV dec−1. The XRD and TEM studies revealed that the formation of heterogeneous interfaces of NiSe2 and FeSe2,generated more active sites that can promote better ions and electron transport in the electrode/electrolyte interfaces. Furthermore, HRTEM analysis indicates that FeSe2 rich in Se vacancy defects can be created with suitable M − O and M − H bond for better OER and HER performance, respectively. In a-two electrode alkaline water electrolyzer, current densities of 10 mA cm−2 and 50 mA cm−2 were obtained at cell voltages of 1.52 V and 1.85 V, respectively, using pure FeSe–NF as both the cathode and anode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号