首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The performance of pitched blade turbines in a gas-liquid dispersion has been studied. The two-phase hydrodynamics, gassed power consumption and mass transfer properties have been examined using six blade open turbines with blade angles from 30 to 60 degrees to the horizontal, mounted for down flow.

There are two distinct regimes by which gas leaving the sparger reaches the impeller: at low gas rates this is indirect via the recirculation loops, while at higher gas flow rates the flow is direct.

The transition between these regimes is reflected in power consumption and mass transfer characteristics and is related to the formation of large cavities behind the blades. It was also concluded that, with respect to mass transfer efficiency, a pitched blade turbine is at least as good as a Rushton turbine.  相似文献   

2.
王成龙  张金利  张敏卿 《化工进展》2018,37(11):4150-4161
氧传质系数是气液搅拌反应器设计的关键参数,研究新型搅拌桨的氧传质性能对气液两相搅拌反应器的强化有着重要的意义。本文实验研究了气体分布器、搅拌转速、气量对氧传质系数、搅拌功耗及气含率的影响,结果表明,氧传质系数随搅拌转速和气量的增加而增加;并建立了氧传质系数与搅拌功耗和表观气速的经验公式,为进一步放大应用提供了基础。采用欧拉-欧拉多相流模型及群体平衡模型对半弧面新型斜叶桨进行了计算流体力学(CFD)数值模拟研究,模拟研究了不同结构、搅拌转速、气量下的流体力学性能和氧传质系数,模拟计算结果与实验值的相对偏差在20%以内;这为研究这一半弧面新型斜叶桨提供了一种可靠的数值模拟方法;优化了半弧面新型斜叶桨的结构,提高了搅拌釜的氧传质效率。  相似文献   

3.
Experiments have been performed to study the effect of the density and the volume of the tracer pulse on the mixing time for two impeller combinations in the presence of gas in a 0.3 m diameter and 1 m tall cylindrical acrylic vessel. The tall multi-impeller aerobic fermenters, which require periodic dosing of nutrients that are in the form of aqueous solution, is a classic case under consideration. Conductivity measuring method was used to measure the mixing time. Two triple impeller combinations; one containing two pitched blade downflow turbines as upper impellers and disc turbine as the lowermost impeller (2 PBTD-DT) and another containing all pitched blade downflow turbines (3 PBTD) have been used. Other variables covered during experiments were the density and the amount of the tracer pulse, the impeller rotational speed and the gas superficial velocity. Fractional gas hold-up, Power consumption and mass transfer coefficient have also been measured for both the impeller combinations. Influence of aeration and impeller speed on the mixing time has been explained by the interaction of air induced and impeller generated liquid flows. Three different flow regimes have been distinguished to explain the hydrodynamics of the overall vessel (i.e., multiple impeller system). A compartment model with the number of compartments varying with the flow regimes have been used to model liquid phase mixing in these flow regimes. A correlation for the prediction of the dimensionless mixing time in the loading regime has been proposed in order to account the effect of the density and the amount of the tracer pulse on the mixing time. Correlations have also been proposed to predict fractional gas hold-up and kLa.  相似文献   

4.
The dependence of power consumption on impeller spacing, and also in relation to gas flow rate and viscosity, in unaerated and aerated gas‐liquid contactors agitated by dual Rushton‐ and by dual pitched blade turbines was comparatively studied. In tap water the two Rushton impellers acted independently for spacings greater than ΔH = 1.65d, while in glycerol solutions the impellers acted independently on reaching an impeller spacing equal to 1.20d; the corresponding values for the two pitched blade impellers were 1.50d for tap water, 1.07d for relatively high viscosities, and 0.53d for very high viscosity values. The Newton number Ne decreases with increasing viscosity for the dual Rushton turbine systems, while an increase of Ne can be observed with increasing viscosity for the corresponding pitched blade systems. For the dual Rushton turbines, gas flow number Q has no effect on Ne, at very high values of viscosity, while at low and relatively high viscosity values a small effect of Q on Ne can be detected. As observed for the dual Rushton turbine systems, Ne is also not affected by Q for the corresponding pitched blade systems at very high viscosity values. Flow number Q does not significantly affect the Newton number for the water‐glycerol solutions with a relatively high viscosity agitated by dual pitched blade turbines, while for the aerated water systems a decrease of Ne can be observed at relatively small gas flow numbers; high values of Q do not affect the Newton number.  相似文献   

5.
Both the numerical and experimental approaches were used to study the effects of the gas recirculation and non‐uniform gas loading on the mass transfer rate for each impeller in a multiple impeller system. By combining the calculated gas velocity and local gas holdup, the gas recirculation rate around each impeller was estimated. The local mass transfer coefficients for systems equipped with various combinations of the Rushton turbine impeller (R) and pitched blade impeller (P) were determined by using the dynamic gassing out method. It is found that the Rushton turbine impeller has to be served as the lowest impeller in order to have a better gas dispersion and to give a higher overall KLa for a multiple impeller gas‐liquid contactor. The upper pitched blade impeller always enforces the circulating flow around the Rushton turbine impeller just beneath it and gives a higher overall average mass transfer rate. However, the system equipped with only the pitched blade impellers results in a much lower mass transfer rate than the other systems owing to the poor gas dispersion performance of the pitched blade impeller.  相似文献   

6.
In our previous work, a low-shear stirred bioreactor was explored. With a pitched blade turbine impeller downflow (PBTD) used, the shear stress generated is high compared with that in some low shear ax...  相似文献   

7.
Rate of gas induction, static pressure, mixing time and power consumption have been measured in 0.57 m i.d. vessel. Different types of impellers namely shrouded disc turbine, shrouded curved blade turbine and pitched blade turbine were used. The impeller diameter was varied from 0.15-0.25 m and the impeller speed was varied from 3 to 20 r/s.

The pitched blade turbine was found to give 30-60 per cent higher rates of gas induction as compared with the best design reported in the literature. The mixing time was found to be lower by a similar magnitude. Moreover in the case of pitched blade turbine it was found that the gas was getting induced radially as well as axially. This eliminates the necessity of the diffuser and hence reducing the complexities in the mechanical structure.  相似文献   

8.
The modified blade turbines are attractive alternatives to the standard Rushton turbine as they do not require any modification in the electrical engine motor and drive assemblies, are simple to manufacture, have a reduced power consumption and have a greatly increased gas-handling capacity before flooding.The modified blades were obtained through increase in the blade height of the Rushton turbine simultaneously with perforation of the blade surface. The filled surface of the modified blade is equal to the blade surface of the standard Rushton turbine.Power dissipation and hydrodynamic regimes using standard and modified Rushton turbine agitators positioned singly or doubly on the same shaft, in a gas—liquid system, were investigated.The TP3 modified turbine with the surface fraction SG/SC of the perforation equal to 0.353 is optimum on the basis of the power consumption and of the gas-handling and dispersing capacity.  相似文献   

9.
新型搅拌桨用于黄原胶溶液气液传质的计算流体力学模拟   总被引:1,自引:0,他引:1  
采用计算流体力学(CFD)方法对高黏度非牛顿流体黄原胶水溶液(质量分数2%)中对称锯齿双斜叶涡轮搅拌桨(SPT)的搅拌效果进行模拟,并与传统的圆盘涡轮搅拌桨(DT)进行对比。通过多重参考系方法解决搅拌桨区域的运动问题,采用Eulerian-Eulerian模型模拟气液二相流动,气泡聚并和破裂过程通过群落平衡方程计算。结果发现,在高黏度体系中SPT气液传质混合性能优于DT。与DT相比,在考察的转速和表观气速下,SPT搅拌功率消耗降低35%左右,氧传质效率提高超过24%。  相似文献   

10.
The turbulent gas‐liquid flow field in an industrial 100‐m3 stirred tank was calculated by using computational fluid dynamics based on the finite‐volume method. Turbulent effects were modeled with the shear stress transport model, and gas‐liquid bubbly flow was modeled with the Eulerian‐Eulerian approach using the Grace correlation for the drag force interphase momentum transfer. The relative motion between the rotating impeller and the stationary baffled tank was considered by using a multiple frames of reference algorithm. The effects of Rushton and pitched‐blade impeller design parameters such as blade geometry, location, and pumping direction on the mixing performance were investigated. It was found that a combination of Rushton turbines with up‐pumping pitched‐blade turbines provides the best mixing performance in terms of gas holdup and interfacial area density. The approach outlined in this work is useful for performance optimization of biotechnology reactors, as typically found in fermentation processes.  相似文献   

11.
The mixing literature on hollow blade turbines (HBTS), for operation in fully turbulent flow, is reviewed and compared with the results of our own studies. The SCABA 6SRGT is shown to have an almost identical pumping rate to a disc turbine, when compared at the same diameter and specific power. An equation is proposed for the effect of scale and blade geometry on the power number of a range of concave hollow blade agitators. The “flooding-loading” condition is revisited. It is found that, when compared at conditions above the minimum Froude number required to disperse gas, the HBT designs are as energetically efficient as Rushton turbines for dispersing gas. If we compare them on an “ungassed” power basis, as is the usual literature case, then the HBT is more efficient because of their ability to disperse gas without significant loss of power. The much lower power number resulting from the streamlined blade design of the HBTs also ensures that they achieve the minimum Froude number required to disperse gas at a much lower power than a RT. A simple method to avoid “flooding” for radial turbines, based on this work, is proposed. Under fully loaded conditions the hollow blade turbines will handle high gas rates without significant loss of power and this ability is a function of the degree of streamlining. For the suspension of high levels of solids the D=T/2 hollow blade turbines, at a clearance of T/4, are found to be amongst the most efficient agitators especially under gassed conditions, where almost no effect of gassing on the just suspension speeds were noted.  相似文献   

12.
在直径为0.48 m的椭圆底搅拌槽中,采用包括半椭圆(HEDT)及抛物线(PDT)形叶片的4种盘式涡轮桨,研究了叶片形状对气液两相体系中临界分散、通气功率和气含率的影响. 结果表明,由载气到气泛测得的泛点比气泛到载气测得的泛点明显滞后;比较相同条件下PDT桨与HEDT桨的通气功率和气含率,相同通气准数时,PDT桨的相对功率消耗(Pg/P0)较高,通常大于0.75,且受通气量影响较小;功率消耗相同时,在较宽气量范围内PDT的气含率较HEDT高约5%. PDT桨在相同气量时达到气液分散所需的功率略低,推荐用于工业气液搅拌反应器中.  相似文献   

13.
提出了一种新构型的搅拌桨一错位桨,并以空气-水-石英砂三相体系为研究对象,与传统的径流桨(Rushton桨)和轴流桨(斜叶桨)在功率消耗、混合时间、气体循环方面进行了比较.结果表明,错位桨相对于传统Rushton桨,功率消耗降低.适应气速范围广,轴向混合能力明显提升;在同等条件下与斜叶浆相比,气体分散能力强,混合时间少.这种新型桨能克服径向流叶轮在轴向混合方面能力的缺陷,有较好的潜在工业应用价值.  相似文献   

14.
In this study, the draw down of floating solids from the liquid surface has been investigated using vessels of 0.61 and 2.67 m diameter. The importance of impeller type (mixed flow pitched blade turbine (PBT) and the narrow blade hydrofoil LE-20), pumping mode and position and the effect of varying liquid height have also been studied. Impeller speed and power consumption at which no solids remain at the surface for more than 2-4 s are determined by visual observations.Results from different scales are discussed in relation to the way in which solids are drawn down from the liquid surface. It has been shown that over a wide range of conditions the power required for drawing down solids can be reduced by operating in the upward rather than downward pumping mode and using an axial flow narrow blade hydrofoil rather than a mixed flow pitched blade turbine. Different scale up criteria, power per unit volume, tip speed and Froude number, are discussed for these systems. For scale up, specific power input is shown to be the most appropriate criterion for upward pumping impellers.  相似文献   

15.
The understanding of the effect of impeller‐sparger configurations on gas dispersion and mass transfer is very important to improve the performance of gas/liquid contactor systems. The influence of the impeller positions, the upper turbine diameter, the sparger ring diameter and its location in regard to the lower impeller on the power consumption, the volumetric mass‐transfer coefficient and the overall oxygen transfer efficiency were studied in a nonstandard curved bottomed reactor with an agitated system with dual disk style turbines. In the range of the gas flow rates studied, the most efficient impeller‐sparger arrangement for the oxygen transfer is the impeller system with turbines of different diameters located at C = 0.25 and IC = 0.5, and with the sparger of smaller diameter than the lower impeller settled below the impeller. A new model to estimate the kLa with an average relative error of 8 %, which takes the reactor operation conditions and the influence of the impeller‐sparger geometry into account, was also proposed.  相似文献   

16.
The dependence of power consumption on impeller spacing in unaerated and aerated gas‐liquid contactors agitated by dual Rushton turbine systems was studied, and the gas flow rate and viscosity effects were measured in relation to these parameters. The experiments were carried out in a 0.19 m i.d. vessel stirred by two Rushton turbines with a diameter d = 0.10 m; with blade length and blade height 0.25 d and 0.2 d, respectively. In tap water the impellers acted independently for spacings greater than 1.65 d, while in glycerol solutions the two impellers already acted independently at an impeller spacing equal to 1.2 d. In aerated systems, a notable increase in the power consumption with increasing impeller spacing could be detected for small gas flow rates and low viscosities, while a decrease in the Newton number with increasing Froude number could be observed at constant impeller spacing. The Newton number was not affected by flow number at high viscosity values.  相似文献   

17.
双层搅拌器组合的气液分散性能研究   总被引:7,自引:0,他引:7  
系统研究和比较了径流桨和径流桨组合、径流桨和斜叶桨组合以及斜叶桨和斜叶桨组合3类不同的双层搅拌器组合,在气液分散搅拌过程中的优劣。小通气量时径流桨和斜叶桨组合(DT PTD和PTU DT)在相同的单位体积搅拌功率下气含率最高,而在大通气量时,双层上翻式斜桨组合(PTU PTU)气含率最高,并发现大通气量时,下层桨不宜采用下压式斜叶桨。  相似文献   

18.
Solids suspension characteristics in gas—liquid–solid three‐phase stirred tanks with multi‐impellers were experimentally examined. Minimum impeller speeds for ultimately homogeneous solid suspension have been measured stirred tank reactors. Three impellers were installed: two four‐pitched blade downflow disk turbines and one Pfaudler type impeller chosen to provide good gas dispersion and to accomplish off‐bottom suspension of solid particles, respectively. Gas dispersion causes an increase in particle sedimentation associated with a decrease in power consumption and as a result, minimum impeller speeds for ultimately homogeneous solid suspension increase with increasing gas flow rates. A correlation was developed to predict minimum impeller speeds for ultimately homogeneous solid suspension. The proposed correlation, which agrees satisfactorily with the experimental results, is expected to be useful in design and scale‐up.  相似文献   

19.
搅拌反应器内三种桨型的气、液分散与相际传质特性研究   总被引:4,自引:0,他引:4  
本文以改进搅拌发酵罐的桨型为目的,对空气-水、空气-亚硫酸钠溶液系统就六平叶、弯叶、箭叶三种圆盘透平桨产生的气泡平均直径、气含率及容量传质系数的变化规律作了较为系统的研究。实验发现:相同单位体积功率、表观气速条件下,三种桨型各自产生的气泡平均直径相差不大;箭叶桨的气含率较低;六平叶圆盘透平桨具有最大的容量传质系数。  相似文献   

20.
The effects of impeller type, stirring power, gas flow rate, and liquid concentration on the gas–liquid mixing in a shear-thinning system with a coaxial mixer were investigated by experiment, and the overall gas holdup, relative power demand, and volumetric mass transfer coefficient under different conditions were compared. The results show that, the increasing stirring power or gas flow rate is beneficial in promoting the overall gas holdup and volumetric mass transfer coefficient, while the increasing system viscosity weakens the mass transfer in a shearing–thinning system. Among the three turbines, the six curved-blade disc turbine (BDT-6) exhibits the best gas pumping capacity; the six 45° pitched-blade disc turbine (PBDT-6) has the highest volumetric mass transfer coefficient at the same unit volume power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号