首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于移动Agent和WSN的突发事件场景数据收集算法研究   总被引:1,自引:0,他引:1  
该文针对无线传感器网络应用于突发事件监测场景的能量消耗和网络延迟问题,提出了基于移动Agent的无线传感器网络簇式数据收集算法.动态成簇过程基于事件严重程度,并由其决定簇的生命周期和覆盖范围.Sink和簇头之间形成以Sink节点为簇头的虚拟簇.移动Agent迁移路径规划过程中下一跳节点的选取基于节点剩余能量、路径损耗及受刺激强度.移动Agent通过节点遍历的方式完成对所有簇内成员节点信息的收集.仿真结果表明,相对于C/S数据收集模型,基于移动Agent的模型具有更好的节能效果,并能一定程度地减少网络延迟,尤其适用于大规模无线传感器网络应用.  相似文献   

2.
In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Ant-colony algorithm, this paper proposes the wireless sensor network routing algorithm based on LEACH. During the construction of sensor network clusters, to avoid the node premature death because of the energy consumption, only the nodes whose residual energy is higher than the average energy can be chosen as the cluster heads. The method of repeated division is used to divide the clusters in sensor networks so that the numbers of the nodes in each cluster are balanced. The basic thought of ant-colony algorithm is adopted to realize the data routing between the cluster heads and sink nodes, and the maintenance of routing. The analysis and simulation showed that the proposed routing protocol not only can reduce the energy consumption, balance the energy consumption between nodes, but also prolong the network lifetime.  相似文献   

3.
Underwater wireless sensor network (UWSN) is a network made up of underwater sensor nodes, anchor nodes, surface sink nodes or surface stations, and the offshore sink node. Energy consumption, limited bandwidth, propagation delay, high bit error rate, stability, scalability, and network lifetime are the key challenges related to underwater wireless sensor networks. Clustering is used to mitigate these issues. In this work, fuzzy-based unequal clustering protocol (FBUCP) is proposed that does cluster head selection using fuzzy logic as it can deal with the uncertainties of the harsh atmosphere in the water. Cluster heads are selected using linguistic input variables like distance to the surface sink node, residual energy, and node density and linguistic output variables like cluster head advertisement radius and rank of underwater sensor nodes. Unequal clustering is used to have an unequal size of the cluster which deals with the problem of excess energy usage of the underwater sensor nodes near the surface sink node, called the hot spot problem. Data gathered by the cluster heads are transmitted to the surface sink node using neighboring cluster heads in the direction of the surface sink node. Dijkstra's shortest path algorithm is used for multi-hop and inter-cluster routing. The FBUCP is compared with the LEACH-UWSN, CDBR, and FBCA protocols for underwater wireless sensor networks. A comparative analysis shows that in first node dies, the FBUCP is up to 80% better, has 64.86% more network lifetime, has 91% more number of packets transmitted to the surface sink node, and is up to 58.81% more energy efficient than LEACH-UWSN, CDBR, and FBCA.  相似文献   

4.
Energy consumption of sensor nodes is one of the crucial issues in prolonging the lifetime of wireless sensor networks. One of the methods that can improve the utilization of sensor nodes batteries is the clustering method. In this paper, we propose a green clustering protocol for mobile sensor networks using particle swarm optimization (PSO) algorithm. We define a new fitness function that can optimize the energy consumption of the whole network and minimize the relative distance between cluster heads and their respective member nodes. We also take into account the mobility factor when defining the cluster membership, so that the sensor nodes can join the cluster that has the similar mobility pattern. The performance of the proposed protocol is compared with well-known clustering protocols developed for wireless sensor networks such as LEACH (low-energy adaptive clustering hierarchy) and protocols designed for sensor networks with mobile nodes called CM-IR (clustering mobility-invalid round). In addition, we also modify the improved version of LEACH called MLEACH-C, so that it is applicable to the mobile sensor nodes environment. Simulation results demonstrate that the proposed protocol using PSO algorithm can improve the energy consumption of the network, achieve better network lifetime, and increase the data delivered at the base station.  相似文献   

5.
Clustering technique in wireless sensor networks incorporate proper utilization of the limited energy resources of the deployed sensor nodes with the highest residual energy that can be used to gather data and send the information. However, the problem of unbalanced energy consumption exists in a particular cluster node in the network. Some more powerful nodes act as cluster head to control sensor network operation when the network is organized into heterogeneous clusters. It is important to assume that energy consumption of these cluster head nodes is balanced. Often the network is organized into clusters of equal size where cluster head nodes bear unequal loads. Instead in this paper, we proposed a new protocol low-energy adaptive unequal clustering protocol using Fuzzy c-means in wireless sensor networks (LAUCF), an unequal clustering size model for the organization of network based on Fuzzy c-means (FCM) clustering algorithm, which can lead to more uniform energy dissipation among the cluster head nodes, thus increasing network lifetime. A heuristic comparison between our proposed protocol LAUCF and other different energy-aware protocol including low energy adaptive clustering hierarchy (LEACH) has been carried out. Simulation result shows that our proposed heterogeneous clustering approach using FCM protocol is more effective in prolonging the network lifetime compared with LEACH and other protocol for long run.  相似文献   

6.
The advances in the size, cost of deployment, and user‐friendly interface of wireless sensor devices have given rise to many wireless sensor network (WSN) applications. WSNs need to use protocols for transmitting data samples from event regions to sink through minimum cost links. Clustering is a commonly used method of data aggregation in which nodes are organized into groups to reduce energy consumption. Nonetheless, cluster head (CH) has to bear an additional load in clustering protocols to organize different activities within the cluster. Proper CH selection and load balancing using efficient routing protocol is therefore a critical aspect for WSN's long‐term operation. In this paper, a threshold‐sensitive energy‐efficient cluster‐based routing protocol based on flower pollination algorithm (FPA) is proposed to extend the network's stability period. Using FPA, multihop communication between CHs and base station is used to achieve optimal link costs for load balancing distant CHs and energy minimization. Analysis and simulation results show that the proposed algorithm significantly outperforms competitive clustering algorithms in terms of energy consumption, stability period, and system lifetime.  相似文献   

7.
当sink节点位置固定不变时,分布在sink 节点周围的传感节点很容易成为枢纽节点,因转发较多的数据而过早失效。为解决上述问题,提出移动无线传感网的生存时间优化算法(LOAMWSN)。LOAMWSN算法考虑sink节点的移动,采用减聚类算法确定sink节点移动的锚点,采用最近邻插值法寻找能遍历所有锚点的最短路径近似解,采用分布式非同步Bellman-Ford算法构建sink节点k跳通信范围内的最短路径树。最终,传感节点沿着最短路径树将数据发送给sink节点。仿真结果表明:在节点均匀分布和非均匀分布的无线传感网中,LOAMWSN算法都可以延长网络生存时间、平衡节点能耗,将平均节点能耗保持在较低水平。在一定的条件下,比Ratio_w、TPGF算法更优。  相似文献   

8.
Energy efficiency is a critical issue in wireless sensor networks(WSNs).In order to minimize energy consumption and balance energy dissipation throughout the whole network,a systematic energy-balanced cooperative transmission scheme in WSNs is proposed in this paper.This scheme studies energy efficiency in systematic view.For three main steps,namely nodes clustering,data aggregation and cooperative transmission,corresponding measures are put forward to save energy.These measures are well designed and tightly coupled to achieve optimal performance.A half-controlled dynamic clustering method is proposed to avoid concentrated distribution of cluster heads caused by selecting cluster heads randomly and to get high spatial correlation between cluster nodes.Based on clusters built,data aggregation,with the adoption of dynamic data compression,is performed by cluster heads to get better use of data correlation.Cooperative multiple input multiple output(CMIMO) with an energy-balanced cooperative cluster heads selection method is proposed to transmit data to sink node.System model of this scheme is also given in this paper.And simulation results show that,compared with other traditional schemes,the proposed scheme can efficiently distribute the energy dissipation evenly throughout the network and achieve higher energy efficiency,which leads to longer network lifetime span.By adopting orthogonal space time block code(STBC),the optimal number of the cooperative transmission nodes varying with the percentage of cluster heads is also concluded,which can help to improve energy efficiency by choosing the optimal number of cooperative nodes and making the most use of CMIMO.  相似文献   

9.
Clustering is an effective technique to prolong network lifetime for energy-constrained wireless sensor networks. Due to the many-to-one traffic pattern in a multi-hop network, the nodes closer to the sink also help to relay data for those farther away from the sink, and hence they consume much more energy and tend to die faster. This paper proposes a sink-oriented layered clustering (SOLC) protocol to better balance energy consumption among nodes with different distances to the sink. In SOLC, the sensor field is divided into concentric rings, and the SOLC protocol consists of intra-ring clustering and inter-ring routing. We compute the optimal ring width and the numbers of cluster heads in different rings to balance energy consumption between intra-cluster data processing and inter-cluster data relaying. Cluster heads in a ring closer to the sink has smaller sizes than those in the rings farther away from the sink, and hence they can spend less energy for intra-cluster data processing and more energy for inter-cluster data relay. Simulation results show that the SOLC protocol can outperform several existing clustering protocols in terms of improved network lifetime.  相似文献   

10.
Non‐uniform energy consumption during operation of a cluster‐based routing protocol for large‐scale wireless sensor networks (WSN) is major area of concern. Unbalanced energy consumption in the wireless network results in early node death and reduces the network lifetime. This is because nodes near the sink are overloaded in terms of data traffic compared with the far away nodes resulting in node deaths. In this work, a novel residual energy–based distributed clustering and routing (REDCR) protocol has been proposed, which allows multi‐hop communication based on cuckoo‐search (CS) algorithm and low‐energy adaptive‐clustering–hierarchy (LEACH) protocol. LEACH protocol allows choice of possible cluster heads by rotation at every round of data transmission by a newly developed objective function based on residual energy of the nodes. The information about the location and energy of the nodes is forwarded to the sink node where CS algorithm is implemented to choose optimal number of cluster heads and their positions in the network. This approach helps in uniform distribution of the cluster heads throughout the network and enhances the network stability. Several case studies have been performed by varying the position of the base stations and by changing the number of nodes in the area of application. The proposed REDCR protocol shows significant improvement by an average of 15% for network throughput, 25% for network scalability, 30% for network stability, 33% for residual energy conservation, and 60% for network lifetime proving this approach to be more acceptable one in near future.  相似文献   

11.
Energy conservation of the sensor nodes is the most important issue that has been studied extensively in the design of wireless sensor networks (WSNs). In many applications, the nodes closer to the sink are overburdened with huge traffic load as the data from the entire region are forwarded through them to reach the sink. As a result, their energy gets exhausted quickly and the network is partitioned. This is commonly known as hot spot problem. Moreover, sensor nodes are prone to failure due to several factors such as environmental hazards, battery exhaustion, hardware damage and so on. However, failure of cluster heads (CHs) in a two tire WSN is more perilous. Therefore, apart from energy efficiency, any clustering or routing algorithm has to cope with fault tolerance of CHs. In this paper, we address the hot spot problem and propose grid based clustering and routing algorithms, combinedly called GFTCRA (grid based fault tolerant clustering and routing algorithms) which takes care the failure of the CHs. The algorithms follow distributed approach. We also present a distributed run time management for all member sensor nodes of any cluster in case of failure of their CHs. The routing algorithm is also shown to tolerate the sudden failure of the CHs. The algorithms are tested through simulation with various scenarios of WSN and the simulation results show that the proposed method performs better than two other grid based algorithms in terms of network lifetime, energy consumption and number of dead sensor nodes.  相似文献   

12.
Data gathering is a major function of many applications in wireless sensor networks. The most important issue in designing a data gathering algorithm is how to save energy of sensor nodes while meeting the requirements of special applications or users. Wireless sensor networks are characterized by centralized data gathering, multi-hop communication and many to one traffic pattern. These three characteristics can lead to severe packet collision, network congestion and packet loss, and even result in hot-spots of energy consumption thus causing premature death of sensor nodes and entire network. In this paper, we propose a load balance data gathering algorithm that classifies sensor nodes into different layers according to their distance to sink node and furthermore, divides the sense zone into several clusters. Routing trees are established between sensor node and sink depending on the energy metric and communication cost. For saving energy consumption, the target of data aggregation scheme is adopted as well. Analysis and simulation results show that the algorithm we proposed provides more uniform energy consumption among sensor nodes and can prolong the lifetime of sensor networks.  相似文献   

13.
Clustering in wireless sensor networks is an effective way to save energy and reuse band- width. To our best knowledge, most of the clustering protocols proposed in literature are of a dynamic type, where cluster heads are selected in each period, followed by cluster formation. In this paper, a new static type clustering method called Hausdorff clustering, which is based on the location of sensor nodes as well as communication efficiency and network connectivity, is proposed. The cluster head, however, is rotated within the cluster by a fuzzy logic algorithm that optimizes the network lifetime. Simulation results show that this approach can significantly increase the lifetime of the sensor network.  相似文献   

14.
针对无线传感器网络能量受限和路由协议中节点能量消耗不均衡的问题,提出一种新的无线传感器网络的分区异构分簇协议(PHC协议).该协议的核心是将3种不同能量等级的节点根据能量的不同分别部署在不同区域,能量较高的高级节点和中间节点使用聚类技术通过簇头直接传输数据到汇聚点,能量较低的普通节点则直接传输数据到汇聚点.仿真结果表明,该协议通过对节点合理的分配部署,使簇头分布均匀,更好地均衡了节点的能量消耗,延长了网络的稳定期,提高了网络的吞吐量,增强了网络的整体性能.  相似文献   

15.
In wireless sensor network, a large number of sensor nodes are distributed to cover a certain area. Sensor node is little in size with restricted processing power, memory, and limited battery life. Because of restricted battery power, wireless sensor network needs to broaden the system lifetime by reducing the energy consumption. A clustering‐based protocols adapt the use of energy by giving a balance to all nodes to become a cluster head. In this paper, we concentrate on a recent hierarchical routing protocols, which are depending on LEACH protocol to enhance its performance and increase the lifetime of wireless sensor network. So our enhanced protocol called Node Ranked–LEACH is proposed. Our proposed protocol improves the total network lifetime based on node rank algorithm. Node rank algorithm depends on both path cost and number of links between nodes to select the cluster head of each cluster. This enhancement reflects the real weight of specific node to success and can be represented as a cluster head. The proposed algorithm overcomes the random process selection, which leads to unexpected fail for some cluster heads in other LEACH versions, and it gives a good performance in the network lifetime and energy consumption comparing with previous version of LEACH protocols.  相似文献   

16.
在交通路灯监控系统中为节省网络节点能耗和降低数据传输时延,提出一种无线传感网链状路由算法(CRASMS)。该算法根据节点和监控区域的信息将监控区域分成若干个簇区域,在每一个簇区域中依次循环选择某个节点为簇头节点,通过簇头节点和传感节点的通信建立簇内星型网络,最终簇头节点接收传感节点数据,采用数据融合算法降低数据冗余,通过簇头节点间的多跳路由将数据传输到Sink节点并将用户端的指令传输到被控节点。仿真结果表明:CRASMS算法保持了PEGASIS算法在节点能耗方面和LEACH算法在传输时延方面的优点,克服了PEGASIS 算法在传输时延方面和LEACH算法在节点能耗方面的不足,将网络平均节点能耗和平均数据传输时延保持在较低水平。在一定的条件下,CRASMS算法比LEACH和PEGASIS算法更优。  相似文献   

17.
Wireless sensor network comprises billions of nodes that work collaboratively, gather data, and transmit to the sink. “Energy hole” or “hotspot” problem is a phenomenon in which nodes near to the sink die prematurely, which causes the network partition. This is because of the imbalance of the consumption of energy by the nodes in wireless sensor networks. This decreases the network's lifetime. Unequal clustering is a technique to cope up with this issue. In this paper, an algorithm, “fuzzy‐based unequal clustering algorithm,” is proposed to prolong the lifetime of the network. This protocol forms unequal clusters. This is to balance the energy consumption. Cluster head selection is done through fuzzy logic approach. Input variables are the distance to base station, residual energy, and density. Competition radius and rank are the two output fuzzy variables. Mamdani method is employed for fuzzy inference. The protocol is compared with well‐known algorithms, like low‐energy adaptive clustering hierarchy, energy‐aware unequal clustering fuzzy, multi‐objective fuzzy clustering algorithm, and fuzzy‐based unequal clustering under different network scenarios. In all the scenarios, the proposed protocol performs better. It extends the lifetime of the network as compared with its counterparts.  相似文献   

18.
A wireless sensor network is a network of large numbers of sensor nodes, where each sensor node is a tiny device that is equipped with a processing, sensing subsystem and a communication subsystem. The critical issue in wireless sensor networks is how to gather sensed data in an energy-efficient way, so that the network lifetime can be extended. The design of protocols for such wireless sensor networks has to be energy-aware in order to extend the lifetime of the network because it is difficult to recharge sensor node batteries. We propose a protocol to form clusters, select cluster heads, select cluster senders and determine appropriate routings in order to reduce overall energy consumption and enhance the network lifetime. Our clustering protocol is called an Efficient Cluster-Based Communication Protocol (ECOMP) for Wireless Sensor Networks. In ECOMP, each sensor node consumes a small amount of transmitting energy in order to reach the neighbour sensor node in the bidirectional ring, and the cluster heads do not need to receive any sensed data from member nodes. The simulation results show that ECOMP significantly minimises energy consumption of sensor nodes and extends the network lifetime, compared with existing clustering protocol.  相似文献   

19.
基于BWAS的无线传感器网络静态分簇路由算法   总被引:1,自引:1,他引:0  
为提高路径搜索效率,避免动态分簇较多的能量消耗,提出了基于最优-最差蚂蚁系统(BWAS)的无线传感器网络静态分簇路由算法.BWAS是对蚁群算法的改进,在路径搜寻过程中评价出最优最差蚂蚁,引入奖惩机制,加快了路径搜索速度.通过无线传感器网络静态分簇、簇内动态选举簇头,在簇头节点间运用BWAS算法搜寻从簇头节点到汇聚节点的多跳最优路径,能减少路径寻优能量消耗,实现均衡能量管理,延长网络寿命,且具有较强的鲁棒性.通过与基于BWAS的动态分簇和基于蚁群算法的动态分簇路由的仿真实验相比较,证实了本算法的有效性.  相似文献   

20.
Routing protocol plays a role of great importance in the performance of wireless sensor networks (WSNs). A centralized balance clustering routing protocol based on location is proposed for WSN with random distribution in this paper. In order to keep clustering balanced through the whole lifetime of the network and adapt to the non-uniform distribution of sensor nodes, we design a systemic algorithm for clustering. First, the algorithm determines the cluster number according to condition of the network, and adjusts the hexagonal clustering results to balance the number of nodes of each cluster. Second, it selects cluster heads in each cluster base on the energy and distribution of nodes, and optimizes the clustering results to minimize energy consumption. Finally, it allocates suitable time slots for transmission to avoid collision. Simulation results demonstrate that the proposed protocol can balance the energy consumption and improve the network throughput and lifetime significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号