首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 124 毫秒
1.
Vertical wind shear is one of the dominating causes of load variations on the blades of a horizontal axis wind turbine. To alleviate the varying loads, wind turbine control systems have been augmented with sensors and actuators for individual pitch control. However, the loads caused by a vertical wind shear can also be affected through yaw misalignment. Recent studies of yaw control have been focused on improving the yaw alignment to increase the power capture at below rated wind speeds. In this study, the potential of alleviating blade load variations induced by the wind shear through yaw misalignment is assessed. The study is performed through simulations of a reference turbine. The study shows that optimal yaw misalignment angles for minimizing the blade load variations can be identified for both deterministic and turbulent inflows. It is shown that the optimal yaw misalignment angles can be applied without power loss for wind speeds above rated wind speed. In deterministic inflow, it is shown that the range of the steady‐state blade load variations can be reduced by up to 70%. For turbulent inflows, it is shown that the potential blade fatigue load reductions depend on the turbulence level. In inflows with high levels of turbulence, the observed blade fatigue load reductions are small, whereas the blade fatigue loads are reduced by 20% at low turbulence levels. For both deterministic and turbulent inflows, it is seen that the blade load reductions are penalized by increased load variations on the non‐rotating turbine parts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
We analyse high‐frequency wind velocity measurements from two test stations over a period of several years and at heights ranging from 60 to 200 m, with the objective to validate wind shear predictions as used in load simulations for wind turbine design. A validated wind shear model is thereby proposed for flat terrain and that can significantly decrease the uncertainty associated with fatigue load predictions for wind turbines with large rotors. An essential contribution is the conditioning of wind shear on the 90% quantile of wind turbulence, such that the appropriate magnitude of the design fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over different turbine components are evaluated under the full wind measurements, using the developed wind shear model and with standard wind conditions prescribed in the IEC 61400‐1 ed. 3. The results display the effect of the Wöhler exponent and reveal that under moderate turbulence, the effect of wind shear is most pronounced on the blade flap loads. It is further shown that under moderate wind turbulence, the wind shear exponents may be over‐specified in the design standards, and a reduction of wind shear exponent based on the present measurements can contribute to reduced fatigue damage equivalent loads on turbine blades. Although the influence of wind shear on extreme loads was found to be negligible, the IEC 61400‐1 wind shear definition was found to result in non‐conservative estimates of the 50 year extreme blade deflection toward the tower, especially under extreme turbulence conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
海上风电场运行维护成本高,而其尾流效应影响更加突出,不但会影响风电场的发电效率,还会增大风电场内机组的疲劳载荷,增加运维成本。文章针对基于疲劳均匀的海上风电场主动尾流控制展开研究,通过GH-Bladed软件计算建立了风电机组在典型控制工况下关键零部件的疲劳损伤量数据库。其中的工况包括最大功率追踪、桨距角控制和偏航控制3种,并引用了量子粒子群算法,通过变桨和偏航两种方法进行优化控制,以实现海上风电场发电量提升和风电机组疲劳均匀的多目标主动尾流优化控制策略,降低海上风电场运维成本。仿真结果表明了所提出控制方法的可行性。  相似文献   

4.
Gunner C. Larsen 《风能》2001,4(3):107-120
Fatigue damage on wind turbines is mainly caused by stochastic loading originating from turbulence. While onshore sites display large differences in terrain topology, and thereby also in turbulence conditions, offshore sites are far more homogeneous, as the majority of them are likely to be associated with shallow water areas. However, despite this fact, specific recommendations on offshore turbulence intensities, applicable for fatigue design purposes, are lacking in the present IEC code. This article presents specific guidelines for such loading. These guidelines are based on the statistical analysis of a large number of wind data originating from two Danish shallow water offshore sites. The turbulence standard deviation depends on the mean wind speed, upstream conditions, measuring height and thermal convection. Defining a population of turbulence standard deviations, at a given measuring position, uniquely by the mean wind speed, variations in upstream conditions and atmospheric stability will appear as variability of the turbulence standard deviation. Distributions of such turbulence standard deviations, conditioned on the mean wind speed, are quantified by fitting the measured data to logarithmic Gaussian distributions. By combining a simple heuristic load model with the parametrized conditional probability density functions of the turbulence standard deviations, an empirical offshore design turbulence intensity is determined. For pure stochastic loading (as associated with standstill situations), the design turbulence intensity yields a fatigue damage equal to the average fatigue damage caused by the distributed turbulence intensity. If the stochastic loading is combined with a periodic deterministic loading (as in the normal operating situation), the proposed design turbulence intensity is shown to be conservative. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
A. Fischer  H. A. Madsen 《风能》2016,19(9):1567-1583
A novel control concept for fatigue load reduction with trailing edge flaps based on the measurement of the inflow locally on the blade was presented. The investigation was conducted with the aeroelastic code HAWC2. The aerodynamic modelling in the code is based on blade element momentum theory. The simulations were carried out for the NREL 5MW reference wind turbine, and the mean wind speed at hub height was 8 m s?1. The turbine was operated with fixed rotational speed. The energy at the blade is concentrated in spectral bands centred at multiples of the rotational frequency up to three times the rotational frequency. The highest fatigue load reduction was achieved when the inflow sensor was placed at the outer parts of the blade. In the best case, the reduction of the local fatigue loads induced by the blade sectional normal force was 60%. The control method gave the highest fatigue load reductions in conditions with strong wind shear. The demands for the flap actuator in terms of deflection angles was ±10°. The requirements in terms of the flap deflection velocity depend mainly on the inflow turbulence intensity. The maximum value was ±40°s?1 for 20% inflow turbulence intensity. Unsteady aerodynamic effects seem to be negligible. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Horizontal-axis wind turbines often operate with unequally performing blades. A simple extension of blade element analysis for unequal blades is developed using the two-dimensional cascade analogue of wind turbines. The vortex strengths of the blade elements can vary with blade number. For three-bladed rotors, the unequal strengths induce an extra velocity at each blade, but for two blades there is no additional velocity. For both blade numbers, there is a modification to the rotational inflow factor. To determine the significance of blade differences, test calculations are presented for two- and three-bladed turbines with different blade pitch angles. The modifications proposed here do not substantially alter the calculations of turbine power and thrust near the point of maximum performance. However, some substantial differences were found at higher thrust. Furthermore, the new method predicts much larger variations in the blade element torque between the blades in the hub region for most operating conditions.  相似文献   

7.
Periodic pulsations from a three-bladed wind turbine   总被引:3,自引:0,他引:3  
In this paper, periodic power pulsations from a three-bladed wind turbine are analyzed. The influence of wind shear, wind speed, turbulence intensity, rotor position and tower oscillation is investigated. No clear dependence between the periodic power components and the wind shear or turbulence intensity has been verified. The investigated turbine sometimes produces large power pulsations at the tower resonance frequency. These occur when the turbine oscillates in the sideways direction of the nacelle  相似文献   

8.
In this paper, the impact on the mechanical loads of a wind turbine due to a previously proposed hydraulic‐pneumatic flywheel system is analysed. Load simulations are performed for the National Renewable Energy Laboratory (NREL) 5‐MW wind turbine using fatigue, aerodynamics, structures, and turbulence (FAST). It is discussed why FAST is applied although it cannot simulate variable rotor inertia. Several flywheel configurations, which increase the rotor inertia of the 5‐MW wind turbine by 15%, are implemented in the 61.5‐m rotor blade. Load simulations are performed twice for each configuration: Firstly, the flywheel system is discharged, and secondly, the flywheel is charged. The change in ultimate and fatigue loads on the tower, the low speed shaft, and the rotor blades is juxtaposed for all flywheel configurations. As the blades are mainly affected by the flywheel system, the increase in ultimate and fatigue loads of the blade is evaluated. Simulation results show that the initial design of the flywheel system causes the lowest impact on the mechanical loads of the rotor blades although this configuration is the heaviest.  相似文献   

9.
Although variable‐speed operation can reduce the impact of transient wind gusts and subsequent component fatigue, this is still an unknown factor that must now be quantified. Reduction in drive‐train stresses caused by fatigue loads in high wind turbulence is fundamental to realizing both output power leveling and long service life for a wind turbine generator (WTG). This paper presents an evolutionary controller comprising a linear quadratic Gaussian (LQG) and neurocontroller acting in tandem to effect optimal performance under high turbulence intensities, for a variable‐speed, fixed‐pitch WTG. The control objectives are maximum energy conversion and reduction in mechanical stresses on the system components. The proposed paradigm utilizes generator torque in controlling the rotor speed in relation to the highly turbulent wind speed, thereby ensuring the extracted aerodynamic power is maintained at a constant value, while shaft moments are regulated. The performance of the proposed controller is compared with that of the LQG and it is found that the former is more efficient in maintaining rated power, minimizing shaft torque variations, and shows robustness to parameter variations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
In recent years, there has been a growing interest by the wind energy community to assess the impact of atmospheric stability on wind turbine performance; however, up to now, typically, stability is considered in several distinct arbitrary stability classes. As a consequence, each stability class considered still covers a wide range of conditions. In this paper, wind turbine fatigue loads are studied as a function of atmospheric stability without a classification system, and instead, atmospheric conditions are described by a continuous joint probability distribution of wind speed and stability. Simulated fatigue loads based upon this joint probability distribution have been compared with two distinct different cases, one in which seven stability classes are adopted and one neglecting atmospheric stability by following International Electrotechnical Commission (IEC) standards. It is found that for the offshore site considered in this study, fatigue loads of the blade root, rotor and tower loads significantly increase if one follows the IEC standards (by up to 28% for the tower loads) and decrease if one considers several stability classes (by up to 13% for the tower loads). The substantial decrease found for the specific stability classes can be limited by considering one stability class that coincides with the mean stability of a given hub height wind speed. The difference in simulated fatigue loads by adopting distinct stability classes is primarily caused by neglecting strong unstable conditions for which relatively high fatigue loads occur. Combined, it is found that one has to carefully consider all stability conditions in wind turbine fatigue load simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Nobuo Namura 《风能》2020,23(2):327-339
A wind shear estimation method based on fore‐aft moment is proposed to estimate wind shear strength without a Doppler lidar. We construct wind shear estimation models (WSEMs) using surrogate models whose input is the time‐averaged fore‐aft moment and various supervisory control and data acquisition (SCADA) system data. Learning data for the WSEMs are generated by numerical simulation or field measurement of a real turbine using SCADA, strain gauges, and Doppler lidar. By using simulation data, we construct 20 WSEMs with various input combinations and surrogate methods to select a model with the highest accuracy. The best WSEM is constructed with the universal Kriging surrogate model and uses the fore‐aft moment and wind speed as its input. Subsequently, the best WSEM is applied to a real turbine to validate its accuracy in real wind conditions, and we confirm that the WSEM has reasonable accuracy. However, the estimation error in the real wind condition is about twice as high as that in the simulation due to the real wind shear not completely corresponding to the assumed wind profile and a large yaw error. Further improvement in wind shear estimation accuracy will be achieved by adding yaw error and turbulence intensity to the input variables and applying the WSEM to wind farms on simple terrain or offshore wind farms where wind profile error decreases.  相似文献   

12.
As more floating farms are being developed, the wake interaction between multiple floating wind turbines (FWTs) is becoming increasingly relevant. FWTs have long natural periods in certain degrees of freedom, and the large‐scale movement of the wake, known as wake meandering, occurs at very low frequencies. In this study, we use FAST.Farm to simulate a two‐turbine case with three different FWT concepts: a semisubmersible (semi), a spar, and a tension leg platform (TLP), separated by eight rotor diameters in the wind direction. Since wake meandering varies depending on the environmental conditions, three different wind speeds (for all three concepts) as well as two different turbulence levels (for the semi) are considered. For the below‐rated wind speed, when wake meandering was most extreme, yaw motion standard deviations for the downstream semi were approximately 40% greater in high turbulence and over 100% greater in low turbulence when compared with the upstream semi. The low yaw natural frequency (0.01 Hz) of the semi was excited by meandering, while quasi‐static responses resulted in approximately 20% increases in yaw motion standard deviations for the spar and TLP. Differences in fatigue loading between the upstream and downstream turbines for the mooring line tension and tower base fore‐aft bending moment mostly depended on the velocity deficit and were not directly affected by meandering. However, wake meandering did affect fatigue loading related to the tower top yaw moment and the blade root out‐of‐plane moment.  相似文献   

13.
This paper analyses the effects of three pitch system faults on two classes of wind turbines, one is an onshore type and the other a floating offshore spar‐type wind turbine. A stuck blade pitch actuator, a fixed value fault and a bias fault in the blade pitch sensor are considered. The effects of these faults are investigated using short‐term extreme response analysis with the HAWC2 simulation tool. The main objectives of the paper are to investigate how the different faults affect the performance of wind turbines and which differences exist in the structural responses between onshore and floating offshore wind turbines. Several load cases are covered in a statistical analysis to show the effects of faults at different wind speeds and fault amplitudes. The severity of individual faults is categorized by the extreme values the faults have on structural loads. A pitch sensor stuck is determined as being the most severe case. Comparison between the effects on floating offshore and onshore wind turbines show that in the onshore case the tower, the yaw bearing and the shaft are subjected to the highest risk, whereas in the offshore case, the shaft is in this position. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
偏航状态下风力机叶片与流场之间相互作用会导致风力机近尾迹流场的湍流特征变化,采用双向流固耦合对不同偏航工况下水平轴风力机近尾迹流场进行数值模拟研究,获得不同偏航角下尾迹湍流特征演化规律。结果表明:随着偏航角的增大,正偏航侧会出现“速度亏损圆环”,且此圆环的范围呈扩大趋势;偏航角的增大对叶根处速度亏损影响最大,对叶尖处速度亏损影响最小,与正偏航侧相比,负偏航侧的速度亏损值减为约1/2;随着偏航角的增大,正负偏航侧的湍流强度变化呈不对称性,正偏航侧对湍流耗散的影响程度较负偏航侧大;涡流黏度越来越小,且在偏航10°涡流黏度相对于偏航5°减小约1/2,沿着轴向叶尖涡的管状环涡结构变得不稳定,出现明显耗散,且在偏航15°之后涡结构的耗散破裂程度越来越剧烈,进而对风力机气动噪声产生较大影响。  相似文献   

15.
B. Nebenführ  L. Davidson 《风能》2017,20(6):1003-1015
Large‐eddy simulations (LES) were used to predict the neutral atmospheric boundary layer over a sparse and a dense forest, as well as over grass‐covered flat terrain. The forest is explicitly represented in the simulations through momentum sink terms. Turbulence data extracted from the LES served then as inflow turbulence for the simulation of the dynamic structural response of a generic wind turbine. In this way, the impact of forest density, wind speed and wind‐turbine hub height on the wind‐turbine fatigue loads was studied. Results show for example significantly increased equivalent fatigue loads above the two forests. Moreover, a comparison between LES turbulence and synthetically generated turbulence in terms of load predictions was made and revealed that synthetic turbulence was able to excite the same spectral peaks as LES turbulence but lead to consistently lower equivalent fatigue loads. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
To determine the control structures and possible power quality issues, the dynamic torque generated by the blades of a wind turbine must be represented. This paper presents an analytical formulation of the generated aerodynamic torque of a three-bladed wind turbine including the effects of wind shear and tower shadow. The comprehensive model includes turbine-specific parameters such as radius, height, and tower dimensions, as well as the site-specific parameter, the wind shear exponent. The model proves the existence of a 3p pulsation due to wind shear and explains why it cannot be easily identified in field measurements. The proportionality constant between the torque and the wind speed is determined allowing direct aerodynamic torque calculation from an equivalent wind speed. It is shown that the tower shadow effect is more dominant than the wind shear effect in determining the dynamic torque, although there is a small dc reduction in the torque oscillation due to wind shear. The model is suitable for real-time wind turbine simulation or other time domain simulation of wind turbines in power systems.  相似文献   

17.
限功率控制下风电机组叶片疲劳损伤研究   总被引:2,自引:0,他引:2       下载免费PDF全文
基于叶素-动量理论计算风电机组叶片气动载荷,建立其疲劳载荷模型;将叶片简化为悬臂梁,采用雨流计数法、Goodman经验公式和Miner线性累计损伤理论计算风力机叶片疲劳损伤和等效疲劳载荷;根据2种限功率控制策略计算不同限功率水平和湍流强度下风力机叶片单位时间的疲劳损伤量,分析限功率运行工况对叶片疲劳损伤的影响。结果表明,新型限功率控制策略可减少变桨系统的动作频率和动作幅度,但其稳定运行状态对叶片的疲劳损伤量大于传统限功率控制策略。最后通过三维函数拟合得到疲劳损伤函数,可应用于限功率条件下风电场优化调度。  相似文献   

18.
Active load reduction strategies such as individual pitch control (IPC) and trailing edge flap (TEF) actuation present ways of reducing the fatigue loads on the blades of wind turbines. This may enable development of lighter blades, improving the performance, cost effectiveness and viability of future multi‐megawatt turbine designs. Previous investigations into the use of IPC and TEFs have been limited to turbines with ratings up to 5 MW and typically investigate the use of these load reduction strategies on a single turbine only. This paper extends the design, implementation and analysis of individual pitch and TEFs to a range of classically scaled turbines between 5 and 20 MW. In order to avoid designing controllers which favour a particular scale, identical scale‐invariant system identification and controller design processes are applied to each of the turbines studied. Gain‐scheduled optimal output feedback controllers are designed using identified models to target blade root load fluctuations at the first and second multiples of the rotational frequency using IPC and TEFs respectively. The use of IPC and TEFs is shown in simulations to provide significant reductions in fatigue loads at the blade root. Fatigue loads on non‐rotating components such as the yaw bearing and tower root (yaw moment) are also reduced with the use of TEFs. Individual pitch performance is seen to be slightly lower on larger turbines, potentially due to a combination of reduced actuator bandwidth and movement of the rotational frequency of larger turbines into a more energetic part of the turbulent spectrum. However, TEF performance is consistent irrespective of scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
J. Park  S. Basu  L. Manuel 《风能》2014,17(3):359-384
Stochastic simulation of turbulent inflow fields commonly used in wind turbine load computations is unable to account for contrasting states of atmospheric stability. Flow fields in the stable boundary layer, for instance, have characteristics such as enhanced wind speed and directional shear; these effects can influence loads on utility‐scale wind turbines. To investigate these influences, we use large‐eddy simulation (LES) to generate an extensive database of high‐resolution ( ~ 10 m), four‐dimensional turbulent flow fields. Key atmospheric conditions (e.g., geostrophic wind) and surface conditions (e.g., aerodynamic roughness length) are systematically varied to generate a diverse range of physically realizable atmospheric stabilities. We show that turbine‐scale variables (e.g., hub height wind speed, standard deviation of the longitudinal wind speed, wind speed shear, wind directional shear and Richardson number) are strongly interrelated. Thus, we strongly advocate that these variables should not be prescribed as independent degrees of freedom in any synthetic turbulent inflow generator but rather that any turbulence generation procedure should be able to bring about realistic sets of such physically realizable sets of turbine‐scale flow variables. We demonstrate the utility of our LES‐generated database in estimation of loads on a 5‐MW wind turbine model. More importantly, we identify specific turbine‐scale flow variables that are responsible for large turbine loads—e.g., wind speed shear is found to have a greater influence on out‐of‐plane blade bending moments for the turbine studied compared with its influence on other loads such as the tower‐top yaw moment and the fore‐aft tower base moment. Overall, our study suggests that LES may be effectively used to model inflow fields, to study characteristics of flow fields under various atmospheric stability conditions and to assess turbine loads for conditions that are not typically examined in design standards. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, an innovative concept for load reduction on the two‐bladed Skywind 3.4 MW prototype is presented. The load reduction system consists of a flexible coupling between the hub mount, carrying the drive train components including the hub assembly, and a nacelle carrier supported by the yaw bearing. This paper intends to assess the impact of introducing a flexible hub connection on the system dynamics and the aero‐elastic response to aerodynamic load imbalances. In order to limit the rotational joint motion, a cardanic spring‐damper element is introduced between the hub mount and the nacelle carrier flange, which affects the system response and the loads. A parameter variation of the stiffness and damping of the connecting spring‐damper element has been performed in the multi‐body simulation solver Simpack. A deterministic, vertically sheared wind field is applied to induce a periodic aerodynamic imbalance on the rotor. The aero‐structural load reduction mechanisms of the coupled system are thereby identified. It is shown that the fatigue loads on the blades and the turbine support structure are reduced significantly. For a very low structural coupling, however, the corresponding rotational deflections of the hub mount exceed the design limit of operation. The analysis of the interaction between the hub mount motion and the blade aerodynamics in a transient inflow environment indicates a reduction of the angle of attack amplitudes and the corresponding fluctuations of the blade loading. Hence, it can be concluded that load reduction is achieved by a combination of reduced structural coupling and a mitigation of aerodynamic load imbalances. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号