首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
杜广庆  陈丽杰  薛闯  白凤武 《化工学报》2014,65(9):3499-3504
通过相转化法制备PVDF多孔支撑膜,在其上涂覆致密的PDMS分离层制备得到PVDF/PDMS复合膜,用于丁醇的分离纯化。以丁醇水溶液为原料液,流速为1.6 L·min-1,丁醇浓度为15 g·L-1,温度为37℃时, PVDF/PDMS复合膜的总通量为158.2 g·m-2·h-1,分离因子为17.3。向丁醇水溶液中按丁醇:丙酮:乙醇比例为6:3:1添加丙酮和乙醇模拟发酵液,PVDF/PDMS复合膜的总通量升高到189.5 g·m-2·h-1,分离因子降低到14.8。进一步考察了以丙酮-丁醇-乙醇(ABE)发酵液为原料液的渗透气化膜分离性能,发酵液中不存在菌体时,PVDF/PDMS复合膜的总通量和分离因子分别为120.2 g·m-2·h-1和19.7,而菌体存在时,复合膜的总通量和分离因子分别为122.1 g·m-2·h-1和16.7。与PDMS均质膜相比,PVDF/PDMS复合膜在丁醇分离过程中的分离性能有了显著的提升, 具有潜在的应用价值。  相似文献   

2.
制备了不同活性炭(AC)填充量的AC-PEG/PVDF杂化膜,并对其形貌与结构进行了相应的表征。以噻吩/正庚烷混合物作为模拟汽油体系,研究了所制备AC-PEG杂化膜的渗透汽化脱硫性能。研究表明,填充活性炭后,膜的脱硫性能明显提高。当活性炭填充量为5%,温度为85℃时,与未填充的PEG膜相比,AC-PEG/PVDF杂化膜的渗透通量由0.43 kg·(m2·h)-1提高至1.14 kg·(m2·h)-1,富硫因子由7.29提高至9.47。  相似文献   

3.
疏水SiO2填充PDMS膜分离水中乙酸正丁酯的性能   总被引:1,自引:0,他引:1       下载免费PDF全文
以聚偏氟乙烯(PVDF)为支撑层,选用疏水性纳米SiO2粉体作为改性剂,制备出聚二甲基硅氧烷(PDMS)复合膜材料,并用于乙酸正丁酯/水溶液的渗透汽化分离。采用SEM、FTIR、XRD、拉伸实验、接触角及正电子湮没寿命谱测定等对膜材料物理化学性能进行了表征,考察了膜材料的溶胀行为及渗透汽化性能。结果表明,SiO2在PDMS膜中分散均匀,且没有发生化学作用,并提高了膜材料的机械强度和疏水性。随着SiO2添加量增加,膜在乙酸正丁酯溶液中的溶胀度先升后降,渗透通量呈下降趋势,而分离因子先增大后减小。当SiO2添加量为4%(质量)时,随进料浓度的增加,渗透通量增大,分离因子先增大后减小;随着温度升高,渗透通量增大,分离因子减小;渗透通量和分离因子最大值分别为240 g·m-2·h-1和542。  相似文献   

4.
为探究出适合分离水中的乙酸正丁酯和乙酸乙酯的新型渗透汽化膜材料,选用沸石ZSM-5 对聚二甲基硅氧烷(PDMS)材料进行填充改性,以聚偏氟乙烯(PVDF)为支撑层,采用刮涂法制备PDMS/ZSM-5/PVDF复合膜渗透汽化分离水中的乙酸正丁酯和乙酸乙酯。采用SEM、接触角测量仪、FTIR、TGA和XRD等对膜材料物理化学性能进行表征,考察了膜材料的溶胀行为及渗透汽化性能。结果表明,ZSM-5在 PDMS 膜中分散均匀,且没有发生化学作用,并提高了膜材料的疏水性和热稳定性。随着ZSM-5添加量的增加,膜在乙酸正丁酯和乙酸乙酯的溶胀度和待分离组分在膜材料中的扩散速率不断增加。随着进料浓度和温度的增加,渗透通量不断增大,分离因子先增大后减小。随着ZSM-5在PDMS/ZSM-5/PVDF复合膜中含量的增加,总渗透通量增加,而分离因子呈现先增加后减小的趋势。当添加量为10%(质量)时,分离因子达到最大值。对于乙酸正丁酯/水体系,渗透通量和分离因子最大值分别为319 g·m -2·h -1和131;而对于乙酸乙酯/水体系,渗透通量和分离因子最大值分别为1385 g·m -2·h -1和121。  相似文献   

5.
李楠  王晓东  黄伟 《现代化工》2022,(5):102-108
为实现乙醇作为燃料的高效利用,采用二次生长法制备出亲水性KAUST-8膜并将其对乙醇水溶液进行渗透汽化分离研究。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、比表面及孔隙度分析仪(BET)和热重等分析手段对KAUST-8晶体和膜材料的形貌、结构和性能进行表征,考察了不同操作温度和进料质量分数下,KAUST-8膜对乙醇水溶液分离效果的影响。结果表明,升高渗透汽化的操作温度,总渗透通量从281.44 g/(m2·h)增加至929.16 g/(m2·h),分离因子从17.2降低至6.1。在同一渗透汽化温度(25℃)下,增大进料液中水的质量分数,水通量从124.2 g/(m2·h)增加到302 g/(m2·h),总通量逐渐升高至359.2 g/(m2·h),分离因子逐步从17.2提高至30.2。  相似文献   

6.
那沙沙  李卫星  邢卫红 《化工学报》2016,67(9):3730-3737
为提高海藻酸钠(SA)膜的渗透汽化分离性能,分别采用纳米氧化铝、纳米氧化锆和纳米氧化钛对SA膜进行改性,对比分析了3种不同杂化膜渗透汽化分离性能的差异,并将分离性能较好的杂化膜应用到乙酸与乙醇酯化反应脱水的体系中。系统考察了无机纳米粒子含量对SA膜渗透汽化分离性能的影响,对杂化膜进行了接触角、傅里叶红外(FTIR)、扫描电子显微镜(SEM)、热重/差示扫描量热(TG/DSC)、X射线衍射(XRD)和拉伸强度等表征与分析。结果表明,无机纳米粒子能提高SA膜的热稳定性、机械强度和渗透通量,当无机纳米粒子与SA质量比为0.3时,掺杂TiO2、ZrO2和Al2O3的杂化膜二碘甲烷的接触角依次升高,同时渗透通量也依次升高。SA-0.3Al2O3杂化膜亲水性较好,然而SA-0.3ZrO2杂化膜分离性能最优,50℃下分离水含量10%的乙醇-水溶液,膜渗透通量达到336 g·m-2·h-1,渗透侧水含量99.97%,分离因子29990。酯化反应脱水实验表明,在80℃时,酯化反应脱水实验乙酸转化率均高于无脱水实验乙酸转化率,平衡转化率不断被打破,反应12 h后,转化率由平衡时的79.3%提高到93.9%。  相似文献   

7.
蒸气渗透(VP)膜分离不存在膜污染风险,在生物乙醇生产中具有广阔的应用前景。将聚二甲基硅氧烷(PDMS)膜和以二维沸石咪唑骨架(ZIF-L)为填充基质制备的PDMS(ZIF-L/PDMS)混合基质膜,分别用于VP膜分离与菊粉水解液发酵制乙醇过程的耦合,分析了二者在耦合过程中的分离性能和发酵性能。探究了不同膜分离方式、不同类型膜及操作条件对膜分离性能的影响。实验结果表明,当料液浓度为5%(质量)、蒸气循环流量为1.5 L·min-1时,ZIF-L/PDMS混合基质膜的VP性能高于渗透汽化(PV),归一化总通量达到1148.78 g·m-2·h-1,分离因子高达19.14,显著提升了乙醇分离性能。ZIF-L/PDMS混合基质膜用于VP耦合发酵,实现了耦合过程的高渗透性和乙醇选择性,与文献报道相比,乙醇移除效果最优,乙醇产率和时空产率分别达到0.421 g·g-1、3.07 g·L-1·h-1,两个指标明显高于单独发酵,极大地提高了乙醇生产效率。因此,ZIF-L/PDMS混合基质膜在原位分离发酵乙醇方面具有很大的应用潜力。  相似文献   

8.
以聚醚嵌段共聚酰胺(PEBA2533)为膜材料,采用干法相转化法制备性能优异的高分子膜,用于渗透汽化-结晶耦合(PVCC)分离系统中回收稀水溶液中的香兰素。采用扫描电子显微镜(SEM)对PEBA2533膜的形貌进行表征。考察原料液浓度、温度对膜渗透汽化性能的影响。结果表明:随着溶液浓度的增加,PEBA2533膜溶胀性能增加,说明PEBA2533能够优先吸附香兰素;随原料液浓度增加,香兰素渗透通量增加,分离因子略微下降;原料液温度增加,香兰素渗透通量和分离因子都增加;并通过Arrhenius方程计算得到香兰素比水对温度更加敏感。PVCC系统中控制一级冷凝器温度为2℃时,一级冷凝器中结晶态香兰素通量为39.52 g·m-2·h-1,纯度在99%以上。  相似文献   

9.
聚环糊精填充PDMS渗透蒸发膜分离苯酚水溶液   总被引:4,自引:1,他引:3       下载免费PDF全文
方志平  姜忠义 《化工学报》2006,57(4):843-848
以聚二甲基硅烷为预聚体,正硅酸乙酯为交联剂,二丁基二月桂酸锡为催化剂,三氯甲烷或正庚烷为溶剂,通过相转化法制备得到了空白聚二甲基硅氧烷(PDMS)膜和聚环糊精(CDP)填充PDMS(CDP-f-PDMS)膜.考察了空白PDMS膜和CDP-f-PDMS膜对苯酚水溶液的渗透蒸发分离性能,证明填充膜优于空白膜.还分别考察了溶剂类型、填充剂用量等制膜因素和操作温度、原料液流量、原料液浓度等操作因素对PDMS膜的渗透蒸发分离性能的影响.当温度为60℃,CDP填充量为1%(质量)时,CDP-f-PDMS膜的渗透通量和分离因子分别可达32.0 g•m-2•h-1和7.2.  相似文献   

10.
采用三甲基氯硅烷(TMCS)作为修饰源对MFI分子筛膜进行表面改性,系统考察了TMCS浓度以及修饰时间对于MFI分子筛膜在分离乙醇/水混合物时的性能影响。SEM、XRD、29Si NMR、FT-IR、接触角实验及分离实验结果表明,TMCS可以与硅羟基反应,嫁接分子筛膜表面,在消除膜表面硅缺陷的同时提高膜的疏水性及膜分离性能的稳定性。随着TMCS浓度以及反应时间的增加,修饰后MFI分子筛膜的通量及分离因子略有下降,但稳定性增强。在TMCS的浓度为0.4%(质量),修饰时间为2 h时,所得到的膜具有最佳渗透汽化分离性能,并可在60℃下分离5%(质量)乙醇/水混合物时保持良好的稳定性。在连续90 h渗透汽化分离过程中,其渗透通量稳定在1.61 kg·m-2·h-1 左右,分离因子保持在20以上。  相似文献   

11.
Pervaporation has great potential in the separation of many significant mixtures. However, excessive penetration of separation layer into the substrate pores enhances the transport resistance of solvent molecules, which impedes the development of pervaporation membrane. In this study, a facile floating-on-water (FOW) method was used to prepare poly(dimethylsiloxane) (PDMS)/polytetrafluoroethylene (PTFE) composite membranes. The formation of separation layer and preparation of composite membrane were step-by-step completed through this liquid–liquid interface induced method. The PDMS layer thickness could be precisely regulated from 0.5 to 8 μm. Moreover, the pore penetration could be controlled by optimizing pre-crosslinking density, crosslinking time on water and polymer solution volume. The obtained PDMS/PTFE composite membrane exhibited a high flux of 2016 g·m−2·h−1 with the separation factor of 12 when separating ethanol from a 5 wt% ethanol/water mixture. The performance of the membrane could be stable for over 200 h, exhibiting great potential in ethanol perm-selective pervaporation.  相似文献   

12.
In this study, spray-coating was used to prepare dihydroxypolydimethylsiloxane (PDMS) composite membranes with high flux and separation factor for biobutanol recovery from aqueous solution. A thin, smooth, and defect-free PDMS layer was prepared by spray-coating on polyvinylidene difluoride ultrafiltration membrane with little PDMS penetration. The effects of process parameters for membrane fabrication and pervaporation on membrane performance were investigated. A membrane with 2 μm active layer was obtained with a high flux of 1306.9 g/m2 h. The optimal membrane with the highest pervaporation separation index (PSI) (19.15 kg/m2 h) showed a total flux of 530.6 g/m2 h and a separation factor of 36.1 at 37°C, and a PSI of 65.61 kg/m2 h and a flux of 1927.0 g/m2 h at 70°C. Membrane performance was affected by feed composition and temperature. Acetone-butanol-ethanol solution and fermentation broth gave lower butanol fluxes and separation factors compared to butanol model solution.  相似文献   

13.
The construction of high-performance MOF-based hollow fiber composite membrane (HFCM) modules is a significant, yet challenging task for the biofuel production industry. In this study, a novel approach was taken to fabricate PDMS@ZIF-8/PVDF HFCMs in modules through a facile ZIF-8 self-crystallization synthesis followed by pressure-assisted PDMS infusion for pervaporation ethanol-water separation. The as-prepared HFCMs exhibited an ultrathin separation layer (thickness, 370 ± 35 nm), which was achieved through precise regulation of the ZIF-8 membrane and defect repair by PDMS infusion. Moreover, the strategy utilized in this study resolved the defect issues arising from MOF agglomeration in conventional composite membranes. Impressively, at the optimal packing density, the prepared membrane demonstrated a remarkable ethanol flux (1.11 kg m−2 h−1) with an PSI value (26.59 kg m−2 h−1) and showed promising long-term stability for the pervaporation of 5 wt% ethanol aqueous solution at 40°C.  相似文献   

14.
乙醇/水及乙酸/水体系的渗透汽化分离   总被引:1,自引:0,他引:1  
以乙醇/水及乙酸/水体系为研究对象,研究了渗透汽化过程中料液浓度、温度因素对分离效果的影响;结合乙醇、乙酸对聚二甲基硅氧烷(PDMS)膜的溶胀特性差别,分析并讨论了两者在渗透汽化过程中可能的分离机理. 研究表明,PDMS膜能够优先透醇,但乙酸分子的缔合物以及羧基与疏水PDMS膜高分子链的强相互作用降低了其在膜中的扩散速率,使低温时乙酸/水体系优先透水,只有当温度在60℃以上时才表现出优先透酸,且分离效果较差.  相似文献   

15.
In this article a modified polydimethylsiloxane (PDMS) blended polystyrene (PS) interpenetrating polymer network (IPN) membranes supported by Teflon (polytetrafluoroethylene) ultrafiltration membrane were prepared for the separation of ethanol in water by pervaporation application. The relationship between the surface characteristics of the surface‐modified PDMS membranes and their permselectivity for aqueous ethanol solutions by pervaporation are discussed. The IPN supported membranes were prepared by sequential IPN technique. The IPN supported membrane were tested for the separation performance on 10 wt % ethanol in water and were characterized by evaluating their mechanical properties, swelling behavior, density, and degree of crosslinking. The results indicated that separation performance, mechanical properties, density, and the percentage of swelling of IPN membranes were influenced by degree of crosslink density. Depending on the feed temperature, the supported membranes had separation factors between 2.03 and 6.00 and permeation rates between 81.66 and 144.03 g m?2 h?1. For the azeotropic water–ethanol mixture (10 wt % ethanol), the supported membrane had at 30°C a separation factor of 6.00 and a permeation rate of 85 g m?2 h?1. Compared to the PDMS supported membranes, the PDMS/PS IPN supported blend membrane ones had a higher selectivity but a somewhat lower permeability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
《分离科学与技术》2012,47(3):420-427
In this article, the composite polydimethylsiloxane (PDMS) membranes supported by cellulose-acetate (CA) microfiltration membrane were successfully prepared by adding nano-fumed silica particles modified with a silane coupling reagent, NH2-C3H6-Si(OC2H5)3. The effects of silica content, feed concentration, and feed temperature on the pervaporation performances of the nano-composite PDMS membranes were investigated for recovering ethanol from aqueous solution by pervaporation. It was found that adding the modified silica particles significantly improved the pervaporation performances of the composite membranes. When the silica content in the membrane was 5 wt%, for a 5 wt% ethanol/water mixture at 40°C, the permeation flux of the membrane maintained about 200 g · m?2 · h?1 and separation factor reached the maximum value of 19.  相似文献   

17.
In this article, chlorosilane‐modified ZSM‐5 particles were incorporated into polydimethylsiloxane (PDMS) to form mixed matrix membranes (MMMs) for ethanol/water mixture separation via pervaporation (PV). The membranes were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, and mechanical performance testing. The maximum loading and dispersion of ZSM‐5 into PDMS were improved by chlorosilane modification. To evaluate the PV performance, the MMMs were used to separate an aqueous ethanol solution. The effect of zeolite loading and operational conditions on PV performance was investigated in detail. The separation factor of the composite membranes filled with modified ZSM‐5 increased considerably versus unmodified membrane, while the total flux decreased to some degree. Of all the chlorosilane‐modified membranes, dodecyltrichlorosilane modified ZSM‐5 filled PDMS showed the best separation factor of 15.8 for ethanol. POLYM. COMPOS., 37:1282–1291, 2016. © 2014 Society of Plastics Engineers  相似文献   

18.
To evaluate the effect of MOF surface wettability for the purification of ethanol from water/ethanol mixtures, the hydrophilic Ni2(l-asp)2bipy membrane is switched to hydrophobic Ni2(l-asp)2bipy@PDMS membrane via vapor deposition of PDMS. The PDMS coating can improve the hydrothermal stability of MOF membranes. The stable Ni2(l-asp)2bipy membrane exhibits a high flux of H2O and acceptable separation factor. The pervaporation studies based on the both two membranes provide insight into the effect of surface wettability on the bio-ethanol purification performance.  相似文献   

19.
To improve the pervaporation performance of PDMS membrane, alkyl groups with different chain length were grafted into PDMS matrix. The prepared membranes were characterized by ATR‐IR, DSC, TGA, PALS, and tensile testing. The effects of alkyl grafting on pervaporation performance of PDMS membrane were investigated in separation of ethyl acetate/water mixture. Experimental results show that the separation factor of PDMS membrane is largely improved by alkyl grafting because of the enhanced preferential sorption of ethyl acetate, and this improvement depends on alkyl grafting ratio and alkyl chain length. The total flux of PDMS membrane reduces after alkyl grafting owing to the decreased free volume. When grafting ratio is above 6.9%, membrane grafted with shorter alkyl groups is preferred for pervaporation. The best pervaporation performance is achieved by 9% octyl grafted PDMS membranes with a separation factor of 592 and a total flux of 188 gm?2 h?1 in separation of 1% ethyl acetate/water mixture at 40 °C. Moreover, this octyl grafted PDMS membrane also exhibits excellent separation performance in removal of butyl acetate, methyl‐tert‐butyl ether, and n‐butanol from water. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43700.  相似文献   

20.
Mixed matrix membranes (MMMs) were made by incorporating vinyltrimethoxysilane (VTMS)‐modified Silicalite‐1 zeolite nanoparticles (V‐Silicalite‐1 NPs) into fluorinated polybenzoxazine (F‐PBZ) modified polydimethylsiloxane (PDMS) polymer through in situ polymerization method. The membrane morphology, surface wettability, and pervaporation performance were systematically investigated. The addition of F‐PBZ into PDMS membranes resulted in substantially improved flux and marginal increase of separation factor, which is the result of higher free volume and higher hydrophobicity caused by the addition of F‐PBZ. The modification of Silicalite‐1 NPs improved the interfacial contact between zeolite crystals and polymer phase. The incorporation of hydrophobic V‐Silicalite‐1 zeolite NPs into the PDMS membranes led to much higher separation factor but reduced flux, which is the result of increased hydrophobicity and reduced free volume. The three‐component MMMs with V‐Silicalite‐1 zeolite NPs in the F‐PBZ fluorinated PDMS exhibited separation factor of 28.7 and flux of 0.207 kg m?2 h?1 for 5 wt % ethanol aqueous solution at 50 °C, while the pure PDMS membranes only had separation factor of 4.8 and flux of 0.088 kg m?2 h?1. The substantial increase of both flux and separation factor were attributed to the higher hydrophobicity and free volume caused by the incorporation of both hydrophobic zeolite crystals and F‐PBZ polymer into the PDMS membranes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44753.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号