首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 524 毫秒
1.
Preparation of Hydroxyapatite Fibers by Electrospinning Technique   总被引:1,自引:0,他引:1  
Hydroxyapatite (Ca10(PO4)6(OH)2, HA) fibers were prepared by electrospinning a precursor mixture of Ca(NO3)2·4H2O and (C2H5O)3PO with a polymer additive, followed by a thermal treatment. The X-ray diffraction (XRD) analysis of the annealed composite fibers revealed that pure HA phase could be obtained by annealing at 600°C for 1 h. The scanning electron microscopy (SEM) analysis showed the surface of as-electrospun composite fibers with an average diameter of 50 μm was smooth due to the amorphous nature of the polymer. However, the surface of the calcined HA fibers was rough because of the complete removal of the polymer. The pure HA fibers obtained by electrospinning in this work were up to 10 mm in length and 10–30 μm in diameter and the hydroxyapatite grain size was ∼1 μm in the HA fibers.  相似文献   

2.
The length of potassium titanate fibers produced by several conventional methods averages 50 μm, with a maximum of 100 μm. Extremely long fibers (most >1000 μm long) were obtained by calcination in N2 gas flowing at 5.2×10-4 m/s.  相似文献   

3.
Three types of polycarbosilane-derived SiC fibers (Nicalon, Hi-Nicalon, and Hi-Nicalon S) with different SiO2 film thicknesses ( b ) were subjected to exposure tests at 1773 K in an argon-oxygen gas mixture with an oxygen partial pressure of 1 Pa. The suppression effect of a SiO2 coating on active oxidation was examined through TG, XRD analysis, SEM observation, and tensile tests. All the as-received fibers were oxidized in the active-oxidation regime. The mass gain and the SiO2 film development showed a suppression of active oxidation at b values of ≧0.070 μm for Nicalon, ≧0.013 μm for Hi-Nicalon, and ≧0.010 μm for Hi-Nicalon S fibers. Considerable strength was retained in the SiO2-coated fibers. For Hi-Nicalon fibers, the retained strength was 71%–90% of the strength in the as-received state (2.14–2.69 GPa).  相似文献   

4.
The effect of TiO2/SiO2 addition on the grain growth of alumina was reinvestigated. TiO2 promoted the grain growth, but there was no abnormal grain growth. However, codoping of TiO2 and SiO2 resulted in a duplex microstructure consisting of large platelike grains, ∼800 μm long and ∼100 μm thick, and fine matrix grains. The observed anisotropic abnormal grain growth was explained in terms of liquid formation during heat treatment.  相似文献   

5.
Compression creep measurements at constant load on ZrO2-6 mol% Sc2O3 (grain size ∼1 μm), ZrO2-6 mol% Y2O3 (grain size ∼17 μm), and heat-treated ZrO2-6 mol% Sc2O3 (grain size ∼2 μm) yield activation energies of 89, 86, and 74 kcal/mol, respectively. The creep rates are linearly proportional to the inverse square of the grain size of the material. A stress exponent, n , of 1.5 was found for the scandia-doped zirconia and two regimes, with n =1 and 6, were found for the yttria-doped zirconia. These data, supported by metallographic evidence, are interpreted as showing that n =1 is associated with cation diffusion control of creep, n =6 with local propagation of inter-crystalline cracks, and n =1.5 with a transition region.  相似文献   

6.
Effects of grain size and grain growth in Nb-doped BaTiO3 on temperature and frequency dependencies of the dielectric constant were investigated. When 0.65 μm powder is sintered to an average grain size of 1 μm, two dielectric constant peaks indicate the presence of Nb-free BaTiO3 and of Nb-containing material. Single peaks are observed above room temperature after additional grain growth or when 0.07 μm powder is sintered to an average grain size of 1 μm. The Curie point of pure BaTiO3 with 1 μm grains is 4 to 6°C lower than that of material with grains >10 μm. Thermodynamically, this behavior is accounted for by a phase inversion stress ∼ the room-temperature stress.  相似文献   

7.
The creep properties of polycrystalline A12O3 (grain size 14 to 65 μm) were examined under compressive stresses of between 4,000 and 18,000 psi (27.6 and 124 MPa) in the range 1600° to 1700°C. Two distinct types of behavior were observed. The creep rate of medium-grained specimens (14 to 30 μm) could be described by ασ1.2 / d2 where σ is the applied stress and d is the grain size. These results are consistent with the Nabarro-Herring creep mechanism. For the coarse-grained (65 μm) specimens, the creep rate was related to the stress by ασ2.6. This behavior was not related to cracking; instead, a dislocation mechanism was thought to be rate-controlling. Considerable evidence for grain-boundary sliding was seen, and measurements showed that grain-boundary sliding contributed between 46 and 77% of the total strain in the 3 medium-grained specimens examined and between 38 and 50% in the 3 coarsegrained specimens examined.  相似文献   

8.
TiO2 fibers were formed by thermal treatment of layered H2Ti4O9 (hydrous titanium dioxide) and KHTi4O9 synthesized by ion-exchange reactions. The calcination of the former at 900° and 1050°C for 3 h yielded TiO2 fibers with anatase and rutile phases, whose length and diameter were 15–20 and 2–5 μm and 10–15 and 3–5 μm, respectively. The thermal treatment of the latter at temperatures of 250° to 500°C yielded pure K2Ti8O17, which tended to decompose to K2Ti6O13 and TiO2 at temperatures >600°C. At 1050°C, K2Ti6O13 phase was formed with rutile TiO2 fibers, whose length and diameter were 10–20 and 1–3 μm, respectively.  相似文献   

9.
Different microstructures in SiC ceramics containing Al2O3, Y2O3, and CaO as sintering additives were prepared by hot-pressing and subsequent annealing. The microstructures obtained were analyzed by image analysis. Crack deflection was frequently observed as the toughening mechanism in samples having elongated α-SiC grains with aspect ratio >4, length >2 μm, and grain thickness ( t ) <3 μm (defined as key grains 1). Crack bridging was the dominant toughening mechanism observed in samples having grains with thickness of 1 μm < t < 3 μm and length >2 μm (key grains 2). The values of fracture toughness varied from 5.4 to 8.7 MPa·m1/2 with respect to microstructural characteristics, characterized by mean grain thickness, mean aspect ratio, and total volume fraction of key grains. The difference in fracture toughness was mainly attributed to the amount of key grains participating in the toughening processes.  相似文献   

10.
Based on experimental and modeling studies, the rate of increase in the martensite start temperature M s for the tetragonal-to-monoclinic transformation with increase in zirconia grain size is found to rise with decrease in ZrO2 content in the zirconia-toughened alumina ZTA system. The observed grain size dependence of M s can be related to the thermal expansion mismatch tensile (internal) stresses which increase with decrease in zirconia content. The result is that finer zirconia grain sizes are required to retain the tetragonal phase as less zirconia is incorporated into the alumina, in agreement with the experimental observations. At the same time, both the predicted and observed applied stress required to induce the transformation are reduced with increase in the ZrO2 grain size. In addition, the transformation-toughening contribution at temperature T increases with increase in the M s temperature brought about by the increase in the ZrO2 grain size, when T > M s. In alumina containing 20 vol% ZrO2 (12 mol% CeO2), a toughness of ∼10 MPa. √m can be achieved for a ZrO2 grain size of ∼2 μm ( M s∼ 225 K). However, at a grain size of ∼2 μm, the alumina–40 vol% ZrO2 (12 mol% CeO2) has a toughness of only 8.5 MPa. √m ( M s∼ 150 K) but reaches 12.3 MPa. ∼m ( M s∼ 260 K) at a grain size of ∼3 μm. These findings show that composition (and matrix properties) play critical roles in determining the ZrO2 grain size to optimize the transformation toughening in ZrO2-toughened ceramics.  相似文献   

11.
Strength degradation and crack propagation in Al2O3 are shown to depend on the initial strength and grain size of the material. The strengths of single-crystal sapphire and polycrystalline Al2O3 specimens with grain sizes of 10, 34, and 40 μ m decreased discontinuously at the critical quenching temperature. In contrast, the strength of polycrystalline Al2O3 with a grain size of 85 μm decreased gradually as the quenching temperature increased. The strength retained after thermal shock and the extent of crack propagation decrease with increasing initial strength and grain size, respectively, in Al2O3.  相似文献   

12.
Flexural creep studies were conducted in a commercially available alumina matrix composite reinforced with SiC particulates (SiCp) and aluminum metal at temperatures from 1200° to 1300°C under selected stress levels in air. The alumina composite (5 to 10 μm alumina grain size) containing 48 vol% SiC particulates and 13 vol% aluminum alloy was fabricated via a directed metal oxidation process (DIMOX(tm))† and had an external 15 μm oxide coating. Creep results indicated that the DIMOX Al2O3–SiCp composite exhibited creep rates that were comparable to alumina composites reinforced with 10 vol% (8 (μm grain size) and 50 vol% (1.5 μm grain size) SiC whiskers under the employed test conditions. The DIMOX Al2O3–SiCp composite exhibited a stress exponent of 2 at 1200°C and a higher exponent value (2.6) at ≥ 1260°C, which is associated with the enhanced creep cavitation. The creep mechanism in the DIMOX alumina composite was attributed to grain boundary sliding accommodated by diffusional processes. Creep damage observed in the DIMOX Al2O3-SiCp composite resulted from the cavitation at alumina two-grain facets and multiple-grain junctions where aluminum alloy was present.  相似文献   

13.
Monolithic alumina bodies with a grain size of 0.5 μm and submicrometer tetragonal ZrO2 (3 mol% Y2O3) polycrystals were produced and investigated. With decreasing indentation load, the hardness increases but may again decrease below about 5 N; relevant measurements require the application of fairly high loads. Decreasing grain sizes increase the hardness of alumina and zirconia ceramics even for very small grain sizes in the submicrometer range.  相似文献   

14.
An optical MgF2 ceramic was hot-pressed at 838 to 983 K with 241-MPa pressure. The maximum mechanical strength (>180 MPa) developed in the resulting ceramic within the grain-growth range μ/μ0= 7 to 10, where μ is the grain size of the hot-pressed article and μ0 that of the starting powder. In the early stages of grain growth (μ/μ0<7), however, mechanical strength was directly proportional to grain size, which appeared to contradict the expectations of the Petch and Knudsen relations. Optical transmission was inversely proportional to grain size, especially in the visible wavelength. This study thus demonstrates a particular case in which increasing grain size promotes higher mechanical strength but lower optical transmission.  相似文献   

15.
Diffusion-induced grain-boundary migration (DIGM) in Ba(Zn1/3Nb2/3)O3 (BZN) ceramics was investigated with small (3.0 μm) and large (31. 4 μm) grain size specimens. The specimens were embedded in Nb2O5 or ZnO powders and then heat-treated at 1250° and 1310°C, respectively. The grain boundaries of the small grain size specimens were immobile, while those of the large grain size specimens migrated away from their centers of curvature. From the observed difference in migration behavior depending on grain size, the magnitude of the driving force for the DIGM was estimated.  相似文献   

16.
Al2TiO5 materials were sintered under different conditions to produce different grain sizes. The resultant microcracked materials exhibited a range of bulk thermal expansions which showed a strong correlation with average grain size. An Al2TiO5 average grain size of 3 to 4 μm was the minimum at which the size and population of microcracks effectively reduced the apparent thermal expansion of the polycrystalline material. Further increases in grain size resulted in a rapid drop in the bulk thermal expansion, followed by diminishing decreases with further increases in grain size. Small amounts of phase stabilizers (<2.1 wt% MgO or Fe2O3) or limited mullite additions in mullite—aluminum titanate composites had no significant effect on this correlation.  相似文献   

17.
Synthesis of a Biomorphic Molybdenum Trioxide Templated from Paper   总被引:2,自引:0,他引:2  
A biomorphic α-MoO3 ceramic was successfully derived from paper templates. By the infiltration of a Mo-contained solution into paper templates, followed by calcinations at 500°C in air, the cellulose fibers of paper were converted into branches composing of orthorhombic α-MoO3 crystals with grain size ranging from 0.5 to 2 μm. In the final product, the initial fibrous structure of the paper templates was retained. This simple biotemplate method provides a cost-effective and ecofriendly route to obtain advanced self-assembling biomorphic ceramics.  相似文献   

18.
Lead zirconate titanate PbZr0.53Ti0.47O3 (PZT) thick films have been deposited on silicon substrate by modified metallorganic decomposition process. Crack-free PZT films of 8 μm thickness can be obtained by using lanthanum nickelate LaNiO3 (LNO) as buffer layer. The greater LNO thickness, the greater thickness of crack-free PZT can be obtained. The X-ray diffraction measurements show the films exhibit a single perovskite phase with (110) preferred orientation. SEM measurements showed the PZT thick films have a columnar structure with grain size about 60–200 nm. The thickness dependence of ferroelectric, dielectric, and piezoelectric properties of PZT thick films have been characterized over the thickness range of 1–8 μm. For PZT with thickness of 8 μm, P r and E c are 30 μC/cm2 and 35 kV/cm, and dielectric constant and dielectric loss are 1030 and 0.031, respectively. The piezoelectric coefficient ( d 33) of PZT with 8 μm thickness is obtained to be 77 pm/V. PZT thick films on LNO-coated Si substrate are potential for MEMS applications.  相似文献   

19.
A promising way to improve the performance of piezoelectric ceramics is grain orientation by templated grain growth. In this work lead-based piezoelectric ceramics Pb(Mg1/3Nb2/3)0.68Ti0.32O3 (PMN–32PT) and Pb(Mg1/3Nb2/3)0.42(Ti0.638Zr0.362)0.58O3 (PMN–37PT–21PZ) ceramics were textured via templated grain growth process. For texturization (001)-oriented BaTiO3 (BT) platelets (approximately 10 μm × 10 μm × 2 μm) were utilized as templates. The texturized ceramics were accomplished by aligning the templates by tape casting. The template growth into the matrix resulted in textured ceramics with Lotgering factors between 0.94 and 0.99 for both compositions. Consequences of the texture are enhanced dielectric and piezoelectric properties. Unipolar strain-field measurements of textured ceramics showed 0.25% strain s 33 at 3 kV/mm. Large signal d 33* of up to 878 pm/V were determined directly from strain measurements. Compared with randomly oriented ceramics in texturized samples unipolar strain s 33 and large signal d 33* was enhanced by a factor of up to 1.8.  相似文献   

20.
Friction and wear of sintered alumina with grain sizes between 0.4 and 3 μm were measured in comparison with Al2O3/TiC composites and with tetragonal ZrO2(3 mol% Y2O3). The dependence on the grain boundary toughness and residual microstresses is investigated, and a hierarchical order of influencing parameters is observed. In air, reduced alumina grain sizes improve the micromechanical stability of the grain boundaries and the hardness, and reduced wear is governed by microplastic deformation, with few pullout events. Humidity and water slightly reduce the friction of all of the investigated ceramics. In water, this effect reduces the wear of coarser alumina microstructures. The wear of aluminas and of the Al2O3/TiC composite is similar; it is lower than observed in zirconia, where extended surface cracking occurs at grain sizes as small as 0.3 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号