首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Interference has strong effect on the available bandwidth of wireless local area network (WLAN) based mesh networks. The channel assignment problem for multi-radio multi-channel multihop WLAN mesh networks is complex NP-hard, and channel assignment, routing and power control are tightly coupled. To mitigate the co-channel interference and improve capacity in multi-channel and multi-interface WLAN mesh networks, a power-efficient spatial reusable channel assignment scheme is proposed, which considers both channel diversity and spatial reusability to reduce co-channel interference by joint adjusting channel, transmission power and routing. In order to assign channel appropriately, an efficient power control scheme and a simple heuristic algorithm is introduced to achieve this objective, which adjust the channel and power level of each radio according to the current channel conditions so as to increase the opportunity of channel spatial reusability. The proposed channel assignment scheme also takes load, capacity and interference of links into consideration. Simulation results show the effectiveness of our approach and demonstrate that the proposed scheme can get better performance than other approaches in terms of throughput, blocking ratio, energy consumption and end-to-end delay.  相似文献   

2.
Mobile multimedia applications have recently generated much interest in mobile ad hoc networks (MANETs) supporting quality-of-service (QoS) communications. Multiple non-interfering channels are available in 802.11 and 802.15 based wireless networks. Capacity of such channels can be combined to achieve higher QoS performance than for single channel networks. The capacity of MANETs can be substantially increased by equipping each network node with multiple interfaces that can operate on multiple non-overlapping channels. However, new scheduling, channel assignment, and routing protocols are required to utilize the increased bandwidth in multichannel MANETs. In this paper, we propose an on-demand routing protocol M-QoS-AODV in multichannel MANETs that incorporates a distributed channel assignment scheme and routing discovery process to support multimedia communication and to satisfy QoS bandwidth requirement. The proposed channel assignment scheme can efficiently express the channel usage and interference information within a certain range, which reduces interference and enhances channel reuse rate. This cross-layer design approach can significantly improve the performance of multichannel MANETs over existing routing algorithms. Simulation results show that the proposed M-QoS-AODV protocol can effectively increase throughput and reduce delay, as compared to AODV and M-AODV-R protocols.  相似文献   

3.
The multi-radio multi-channel wireless mesh network (MRMC-WMN) draws general attention because of its excellent throughput performance, robustness and relative low cost. The closed interactions among power control (PC), channel assignment (CA) and routing is contributed to the performance of multi-radio multi-channel wireless mesh networks (MRMC-WMNs). However, the joint PC, CA and routing (JPCR) design, desired to achieve a global optimization, was poor addressed. The authors present a routing algorithm joint with PC and CA (JPCRA) to seek the routing, power and channel scheme for each flow, which can improve the fairness performance. Firstly, considering available channels and power levels, the routing metric, called minimum flow rate, is designed based on the physical interference and Shannon channel models. The JPCRA is presented based on the genetic algorithm (GA) with simulated annealing to maximize the minimum flow rate, an non-deterministic polynomial-time hard (NP-Hard) problem. Simulations show the JPCRA obtains better fairness among different flows and higher network throughput.  相似文献   

4.
This paper quantitatively investigates the relationship between physical transmission rate and network capacity in multi-radio multi-channel wireless mesh networks by using mixed-integer linear programming to formulate the joint channel assignment and routing problem. The numerical results show that the rate lower than the highest available one can improve the network capacity due to increased connectivity. It is also shown that the lower transmission rate is able to utilize abundant channels more effectively due to the higher degree of freedom in channel assignment. Finally, it is shown that joint rate, channel assignment and routing improves the network capacity further.  相似文献   

5.
Use of multiple orthogonal channels can significantly improve network throughput of multi-hop wireless mesh networks (WMNs). In these WMNs where multiple channels are available, channel assignment is done either in a centralized manner, which unfortunately shows a poor scalability with respect to the increase of network size, or in a distributed manner, where at least one channel has to be dedicated for exchanging necessary control messages or time synchronization has to be utilized for managing the duration of data packet transmission, causing excessive system overhead and waste of bandwidth resource. In this paper, we first formulate multi-channel assignment as a NP-hard optimization problem. Then a distributed, heuristic temporal-spatial multi-channel assignment and routing scheme is proposed, assuming every wireless node in the network is equipped with a single-radio interface. Here the gateway node is set to use all the channels sequentially in a round-robin fashion. This temporal scheme ensures all the nodes that need to directly communicate with the gateway node shall have a fair access to it. For those non-gateway nodes, a spatial scheme where channels are assigned based on their neighbors’ channel usage is adopted to exploit parallel communications and avoid channel interference among nodes. Furthermore, since the routing factors, including channel usage of neighbor nodes, node hop count, node memory size, and node communication history, are all considered along with the channel assignment, network performance, measured by packet delivery latency, channel usage ratio, and memory usage ratio, tends to be considerably enhanced. The simulation results have confirmed that, compared with a couple of well-known multi-channel assignment schemes, such as LCM [21] and ROMA [15], the proposed scheme shows substantial improvement in network throughput with a very modest collision level. In addition, the proposed scheme is highly scalable as the algorithm complexity is only linearly dependent on the total number of channels that are available in the network and the number of neighbors that a network node directly connects to.  相似文献   

6.
Energy is an important issue in mobile ad hoc networks (MANETs), and different energy‐aware routing mechanisms have been proposed to minimize the energy consumption in MANETs. Most of the energy‐aware routing schemes reported in the literature have considered only the residual battery capacity as the cost metric in computing a path. In this paper, we have proposed, an energy‐aware routing technique which considers the following parameters: (i) a cost metric, which is a function of residual battery power and energy consumption rate of participating nodes in path computation; (ii) a variable transmission power technique for transmitting data packets; and (iii) To minimize the over‐utilization of participating nodes, a limit is set on the number of paths that can be established to a destination through a participating node. The proposed scheme is simulated using Qualnet 4.5 simulator, and compared with Ad hoc On‐Demand Distance Vector (AODV) and Lifetime Enhancement Routing (LER). We observed that the proposed scheme performs better in terms of network lifetime and energy consumption. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we first identify several challenges in designing a joint channel assignment and routing (JCAR) protocol in heterogeneous multiradio multichannel multihop wireless networks (M3WNs) using commercial hardware [e.g., IEEE 802.11 Network Interface Card (NIC)]. We then propose a novel software solution, called Layer 2.5 JCAR, which resides between the MAC layer and routing layer. JCAR jointly coordinates the channel selection on each wireless interface and the route selection among interfaces based on the traffic information measured and exchanged among the two-hop neighbors. Since interference is one of the major factors that constrain the performance in a M3 WN, in this paper, we introduce an important channel cost metric (CCM) which actually reflects the interference cost and is defined as the sum of expected transmission time weighted by the channel utilization over all interfering channels (for each node). In CCM, both the interference and the diverse channel characteristics are taken into account. An expression for CCM is derived in terms of equivalent fraction of air time by explicitly taking the radio heterogeneity into consideration. Using CCM as one of the key performance measures, we propose a distributed algorithm (heuristic) that produces near-optimal JCAR solution. To evaluate the efficacy of our heuristics, we conduct extensive simulations using the network simulator NS2. To demonstrate implementation feasibility, we conducted various experiments for the proposed distributed JCAR algorithm on a multihop wireless network testbed with nine wireless nodes, each is equipped with single/multiple 802.11a/g cards. Both experimental and simulation results demonstrate the effectiveness and implementation easiness of our proposed software solution  相似文献   

8.
在移动自组网中,信道条件直接决定了数据包传输的可靠性.为有效应对信道衰落,提出一种基于信道状态、可实时监控链路的路由方案来改进AOMDV协议.该方案在路由寻找过程中,以信道平均无衰时间(ANFD)作为路由度量来选择稳定的链路,并采用一种根据信道状态信息抢先切换的策略来维护连接的可靠性.仿真结果表明,通过该改进方案,AOMDV协议在网络吞吐量、平均端到端时延、路由控制开销和数据包投递率等性能上均有改善.  相似文献   

9.
Many sensor node platforms used for establishing wireless sensor networks (WSNs) can support multiple radio channels for wireless communication. Therefore, rather than using a single radio channel for whole network, multiple channels can be utilized in a sensor network simultaneously to decrease overall network interference, which may help increase the aggregate network throughput and decrease packet collisions and delays. This method, however, requires appropriate schemes to be used for assigning channels to nodes for multi‐channel communication in the network. Because data generated by sensor nodes are usually delivered to the sink node using routing trees, a tree‐based channel assignment scheme is a natural approach for assigning channels in a WSN. We present two fast tree‐based channel assignment schemes (called bottom up channel assignment and neighbor count‐based channel assignment) for multi‐channel WSNs. We also propose a new interference metric that is used by our algorithms in making decisions. We validated and evaluated our proposed schemes via extensive simulation experiments. Our simulation results show that our algorithms can decrease interference in a network, thereby increasing performance, and that our algorithms are good alternatives for static channel assignment in WSNs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A quasi-static routing scheme called path switching for large-scale ATM packet switch systems is proposed. Previously the Clos network has been used as the model for many large-scale ATM switch architectures, in which the most difficult issue is path and bandwidth assignment for each connection request. The static routing scheme, such as multirate circuit switching, does not fully exploit the statistical multiplexing gain. In contrast, the dynamic routing scheme, such as straight matching, requires slot-by-slot computation of route assignment. Path switching is a compromise of these two routing schemes. It uses a predetermined periodical connection pattern in the central stage, look-ahead selection in the input stage, and output queueing in the last stage. The scheduling of path switching consists of capacity assignment and route assignment. The capacity assignment is constrained by the quality of service of connection requests. The route assignment is based on the timespace interleaving of the coloring of bipartite multigraphs. We show that path switching can handle multirate and multimedia traffic effectively in the Clos network  相似文献   

11.
IEEE 802.11s is one of the emerging standards designed to build wireless mesh networks which may serve to extend the coverage of access networks. The default IEEE 802.11s path selection protocol Hybrid Wireless Mesh Protocol (HWMP) is based on the radio-aware airtime link metric (ALM) that outperforms the hop-count metric in single channel multi-hop wireless networks. However, this metric may lead to capacity degradation when multiple channels and/or multi-radio are used. To fully exploit the capacity gain of multiple channels use, new routing metrics have been proposed such as weighted cumulative expected transmission time, metric of interference and channel switching, interference aware routing metric, exclusive expected transmission time, and normalized bottleneck link capacity. These metrics distribute the data traffic load among channels and/or radios to reach the final destination. In this paper, we provide a qualitative comparison study that considers the characteristics of these metrics. Indeed, we substitute ALM by these different metrics, and we evaluate the performance of HWMP through simulation. Obtained results allow us to identify the appropriate use case of each metric.  相似文献   

12.
Cognitive Wireless Mesh Networks (CWMN) is a novel wireless network which combines the advantage of Cognitive Radio (CR) and wireless mesh networks. CWMN can realize seamless integration of heterogeneous wireless networks and achieve better radio resource utilization. However, it is particularly vulnerable due to its features of open medium, dynamic spectrum, dynamic topology, and multi-top routing, etc.. Being a dynamic positive security strategy, intrusion detection can provide powerful safeguard to CWMN. In this paper, we introduce trust mechanism into CWMN with intrusion detection and present a trust establishment model based on intrusion detection. Node trust degree and the trust degree of data transmission channels between nodes are defined and an algorithm of calculating trust degree is given based on distributed detection of attack to networks. A channel assignment and routing scheme is proposed, in which selects the trusted nodes and allocates data channel with high trust degree for the transmission between neighbor nodes to establish a trusted route. Simulation results indicate that the scheme can vary channel allocation and routing dynamically according to network security state so as to avoid suspect nodes and unsafe channels, and improve the packet safe delivery fraction effectively.  相似文献   

13.
Opportunistic routing (OR) could adapt to dynamic wireless sensor networks (WSNs) because of its inherent broadcast nature. Most of the existing OR protocols focus on the variations of propagation environment which are caused by channel fading. However, a few works deal with the dynamic scenario with mobile nodes. In this paper, a mobile node (MN) aware OR (MN-OR) is proposed and applied to a WSN in the high-speed railway scenario where the destination node is deployed inside a high speed moving train, and the MN-OR not only considers the mobility of node but also utilizes the candidate waiting time induced by the timer-based coordination scheme. Specifically, to reduce the number of duplicate transmissions and mitigate the delay of information transmission, a new selection strategy of the candidate forwarders is presented. In addition, two priority assignment methods of the candidate forwarders are proposed for the general relay nodes (GRNs) and the rail-side nodes (RSNs) according to their different routing requirements. Extensive simulation results demonstrate that the proposed MN-OR protocol can achieve better network performances compared with some existing routing schemes such as the well-known Ad-hoc on-demand distance vector routing (AODV) and the extremely opportunistic routing (ExOR) protocols.  相似文献   

14.
无线Mesh网络中的虫洞攻击检测研究   总被引:1,自引:0,他引:1  
为了有效检测出无线mesh网络中的虫洞攻击,针对微软提出的支持多射频的链路质量源路由MR-LQSR(multi-radio link-quality souse routing)协议提出了一种虫洞攻击模型,并根据虫洞攻击及无线mesh网的特点,在基于端到端的虫洞攻击检测算法、投票机制、邻居检测机制和基于身份加密技术的基础上提出一种基于端到端的虫洞攻击检测机制.最后通过理论分析和实验证实了该机制能有效地抵御无线mesh网中的虫洞攻击和提高无线mesh网的安全性.  相似文献   

15.

In this paper, we propose a data aggregation back pressure routing (DABPR) scheme, which aims to simultaneously aggregate overlapping routes for efficient data transmission and prolong the lifetime of the network. The DABPR routing algorithm is structured into five phases in which event data is sent from the event areas to the sink nodes. These include cluster-head selection, maximization of event detection reliability, data aggregation, scheduling, and route selection with multi attributes decision making metrics phases. The scheme performs data aggregation on redundant data at relay nodes in order to decrease both the size and rate of message exchanges to minimize communication overhead and energy consumption. The proposed scheme is assessed in terms of packet delivery, network lifetime, ratio, energy consumption, and throughput, and compared with two other well-known protocols, namely “information-fusion-based role assignment (InFRA)” and “data routing for in-network aggregation (DRINA)”, which intrinsically are cluster and tree-based routing schemes designed to improve data aggregation efficiency by maximizing the overlapping routes. Meticulous analysis of the simulated data showed that DABPR achieved overall superior proficiency and more reliable performance in all the evaluated performance metrics, above the others. The proposed DABPR routing scheme outperformed its counterparts in the average energy consumption metric by 64.78% and 51.41%, packet delivery ratio by 28.76% and 16.89% and network lifetime by 42.72% and 20.76% compared with InFRA and DRINA, respectively.

  相似文献   

16.

One fundamental issue in cognitive radio mobile ad hoc networks (CR-MANETs) is the selection of a stable path between any source and destination node to reduce the end-to-end delay and energy consumption arisen from route reconstruction. In this way, we analyse the link stability by calculating the link life time that is dependent on failures caused by secondary users’ (SUs) movements and primary users’ (PUs) activities. We propose a joint stability-based routing, link scheduling and channel assignment (SRLC) algorithm in CR-MANETs, which is benefited from considering the link life time, amount of interference imposed on PUs and energy consumption. The proposed algorithm selects a frequency channel/time slot in a way that channel utilization and previous behaviours of SUs and PUs, are taken into account. In the proposed SRLC, the concept of load balancing is applied by avoiding to route packets through SUs with insufficient energy. The effectiveness of the proposed algorithm is verified by evaluating the aggregate interference energy, end-to-end delay, goodput and the energy usage per packet transmission under three different scenarios. The results show our proposed scheme finds better routes compared to the recently proposed joint stable routing and channel assignment protocol.

  相似文献   

17.
In broadband satellite access networks, the efficient management of the return channel transmission capacity is key in reducing the service cost while satisfying the QoS requirements of IP-based multimedia applications. In this article a dynamic capacity allocation scheme based on combined free/demand assignment multiple access is proposed, allowing the return channel capacity to be efficiently shared among many user terminals. Simulation results indicate that the proposed scheme provides adequate DiffServ IP QoS support while maintaining high satellite bandwidth utility and reduced DCA signaling overhead.  相似文献   

18.
19.
Cognitive radio (CR) has emerged as a promising technology to improve spectrum utilization. Capacity analysis is very useful in investigating the ultimate performance limits for wireless networks. Meanwhile, with increasing potential future applications for the CR systems, it is necessary to explore the limitations on their capacity in dynamic spectrum access environment. However, due to spectrum sharing in cognitive radio networks (CRNs), the capacity of the secondary network (SRN) is much more difficult to analyze than that of traditional wireless networks. To overcome this difficulty, in this paper we introduce a novel solution based on small world model to analyze the capacity of SRN. First, we propose a new method of shortcut creation for CRNs, which is based on connectivity ratio. Also, a new channel assignment algorithm is proposed, which jointly considers the available time and transmission time of the channels. And then, we derive the capacity of SRN based on small world model over multi-radio multi-channel (MRMC) environment. The simulation results show that our proposed scheme can obtain a higher capacity and smaller latency compared with traditional schemes in MRMC CRNs.  相似文献   

20.
Throughput limitation of wireless networks imposes many practical problems as a result of wireless media broadcast nature. The solutions of the problem are mainly categorized in two groups; the use of multiple orthogonal channels and network coding (NC). The networks with multiple orthogonal channels and possibly multiple interfaces can mitigate co-channel interference among nodes. However, efficient assignment of channels to the available network interfaces is a major problem for network designers. Existing heuristic and theoretical work unanimously focused on joint design of channel assignment with the conventional transport/IP/MAC architecture. Furthermore, NC has been a prominent approach to improve the throughput of unicast traffic in wireless multi-hop networks through opportunistic NC. In this paper we seek a collaboration scheme for NC in multi-channel/interface wireless networks, i.e., the integration of NC, routing and channel assignment problem. First, we extend the NC for multiple unicast sessions to involve both COPE-type and a new proposed scheme named as Star-NC. Then, we propose an analytical framework that jointly optimizes the problem of routing, channel assignment and NC. Our theoretical formulation via a linear programming provides a method for finding source–destination routes and utilizing the best choices of different NC schemes to maximize the aggregate throughput. Through this LP, we propose a novel channel assignment algorithm that is aware of both coding opportunities and co-channel interference. Finally, we evaluate our model for various networks, traffic models, routing and coding strategies over coding-oblivious routing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号