首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2013年4月22日内蒙古通辽市科尔沁左翼后旗、辽宁阜新市彰武县交界发生5.3级地震.研究发现,该地震序列震中分布、震源机制及烈度考察极震区长轴方向均为近东西方向,与横贯震区的养畜牧河断裂走向一致,综合判定该断裂是5.3级地震的发震构造.  相似文献   

2.
唐山地震发震构造的浅层地震探测   总被引:8,自引:2,他引:6  
利用浅层地震探测方法,研究了唐山地震区1年前出现在卫星图像上的异常现象与发震构造的关系,探讨地震中长期预测的途径。结果表明:唐山地震断层是一条倾向NW的右旋走滑第四纪同生断裂,它错断了全新统,晚更新统,中更新统,和早更新统地层。  相似文献   

3.
山东省长岛第四纪断裂活动初步研究   总被引:1,自引:0,他引:1  
本文通过对长岛地区的地震地质考察,发现岛内发育有北东-北北东向、北西-北西西向和近东西向等多条断裂。岛内发育的断裂在第四纪时均有过活动,这一特点与长岛处于张家口—渤海—威海断裂带内的构造背景是相符合的。在前人研究的基础上,本文对本区的地震构造和地震活动特点进行了研究,对1548年渤海海峡7级地震的发震构造和震中位置进行了讨论。  相似文献   

4.
Because of the frequent seismic activity in Songyuan in recent years, the modes of tectonic movement in this area since the Quaternary have attracted increasing consideration. This paper selects the Gudian Fault which locates between the southeast uplift and central depression of Songliao Basin as the research object. We discussed the Quaternary structural characteristics of the Gudian Fault using growth strata. Using the data of deep seismic reflection prospecting for oil, we determined the location, geometry and kinematics characteristics of the Gudian Fault. And using the shallow seismic reflection prospecting data, the combined drilling exploration data and TL data, we determined precisely the inversion tectonics feature of the fault since late Cenozoic. Based on the above data, we believe that the Gudian Fault is dominated mainly by thrust-folding since Quaternary. A set of growth strata is recognized by shallow seismic reflection exploration data. According to the overlap of growth strata and the relationship between deposition rate and uplift rate, we confirm that the uplift rate of Gudian Fault in the early of Early Pleistocene is less than 0.15mm/a. And according to the offlap of growth strata and the relationship between deposition rate and uplift rate, the uplift rate of the Gudian Fault is more than 0.091mm/a in the late of Early Pleistocene and more than 0.052mm/a in middle Pleistocene. According to the chronological data, it is determined that the uplift rate of the Gudian Fault is 0.046mm/y since 205ka.  相似文献   

5.
公元前179年“齐楚地震”考证与发震构造讨论   总被引:1,自引:1,他引:0       下载免费PDF全文
对公元前179年(汉文帝前元元年)"齐楚地震"的基本参数一直有不同认识,属于疑难历史地震。在吸收西汉政区研究成果的基础上,深入分析了地震史料隐含的约束条件,对这次地震震中位置进行了考证。提出了以齐楚边界和国都连线为基点,结合史料给出的有关约束条件,综合确定震中位置的技术方案。同时,依据地震地质调查成果,从发震构造角度论证了震中位置的合理性。1)鉴于西汉时期政权更迭频繁,通过追踪西汉初期(尤其是汉文帝前元元年前后)齐、楚政区变化情况,尽力复原当时的行政区划和齐楚两国边界分布。2)认真分析史料记载的"齐楚地震,二十九山同日崩,大水溃出"所指示的地区范围,对比历史上其他震例造成的破坏现象的空间分布以及破坏程度,为震中位置和震级确定提供重要约束条件。经文献考证认为,这次地震可定为公元前179年6月6日平邑南(35.2°N,117.6°E)7级地震。3)结合卫星影像判读和野外地震地质调查资料,分析研究了"齐楚地震"所在地区的地质构造特点和活动断裂发育情况。在排除该地震事件属于郯庐断裂带地震事件后,通过对比分析郯庐断裂带西侧发育的各条NW向断裂的构造地貌以及剖面表现,认为苍尼断裂可能是"齐楚地震"的发震断裂。在震中附近,苍尼断裂控制着白彦断陷盆地的发育,也是断层地貌最为清楚的地方,断错的地层最新,断层运动量也最大。  相似文献   

6.
应用浅层地震勘探法对宁夏吴忠地区北部的浅部地壳结构和隐伏活动断裂进行研究。结果表明,该区存在2条隐伏断裂,分别为银川主断层南段和新华桥断层。推测银川主断层南段为近SN走向的W倾正断层,断层下盘地层界面一般呈近水平状展布,而在断层上盘,T_Q及其以下的地层界面向断面方向倾伏并显示出逆牵引现象,断层向上错断了第四系内部。钻孔联合地质剖面及浅层地震探测结果共同揭示新华桥断层为一条走向NE,倾向SW的正断层,深、浅地震测线控制的新华桥断层延伸长度9 km左右,向上错断了第四系内部的T_(02)界面。  相似文献   

7.
阐述张家口市尚义M_S 4.0地震构造背景、地震活动特征,总结地震应急调查成果,介绍极震区震感现象和分布范围。通过对地震现场调查点和电话调查点的烈度评定,确定极震区的影响烈度为Ⅴ度,圈定地震等烈度分布区域,同时修正观测仪器震中位置。结合本次地震的宏观烈度分布、震源机制和震区卫星影像的线性构造解释等资料,讨论本次地震的孕震构造和发震断层。  相似文献   

8.
The Gudian Fault in the southwest of Songyuan is an important fault in the central depression of the Songliao Basin. It was recognized from the petroleum exploration data. Based on the data, we conducted shallow seismic exploration, drilling exploration, age determination(OSL) and topography measurement. The fault features and its motion characteristics are analyzed with the results of shallow seismic exploration. With stratigraphic correlation and optical stimulated luminescence dating, the latest active age of the fault is determined. The surface relief of the region to the southeast of the drilling site is relatively larger than surrounding places. An 800m long section across the fault was measured by GPSRTK, and the deformation amount across the zone was calculated. Four conclusions are drawn in this paper:(1) The Gudian Fault is arcuate in shape and shows a property of inverse fault with a length of about 66km in the reflection interface T1(bottom of the upper Cretaceous Nenjiang Group). (2) The middle part of the fault rupture is wider than the ends, narrowing or dying out outwards. According to this feature and the rupture of the bottom of the fourth segment of the upper Cretaceous Nenjiang Group, the fault can be divided into three segments, e.g. Daliba Village-Gaizijing-Guyang segment, Guyang-Shenjingzi-Julongshan Village segment and Julongshan Village-Caiyuanzi segment. (3) The yellow silt layer at the base of the upper Pleistocene series ((33.66±3.27) ka BP~50ka BP) is offset by the Gudian Fault, while the upper tawny silt layer is not influenced by the fault. Thus, the fault belongs to late Pleistocene active fault. (4) The amount of geomorphic deformation around Shenjingzi is 9m. The depth of the bottom of the upper Pleistocene series is 11m and the Huangshan Group of the mid Pleistocene series exposes to the southeast of the deformation zone. Therefore, the throw of the bottom of the upper Pleistocene series is about 20m at the sides of the deformation zone. In addition, the Qianguo M6(3/4) earthquake occurred in Songyuan area in 1119 AD. Though some studies have been done, arguments still exist on the seismogenic structure of the Qianguo M6(3/4) earthquake. Combined with others studies, Gudian Fault is considered as the seismogenic structure of the Qianguo M6(3/4) earthquake.  相似文献   

9.
贵州沿河MS4.9地震发生在历史地震强度较低的上扬子地块凤冈SN向隔槽式褶皱变形区。通过地震地质背景分析、震害调查、震源机制解、断层调查和库区水位变化情况等,得到主要认识如下:由于震源深度浅、灾区老旧自建房抗震性能差,导致本次地震直接经济损失严重;本次地震主震的机制解为节面Ⅰ:走向61°/倾角35°/滑动角135°,节面Ⅱ:走向190°/倾角66°/滑动角63°,表现为走向NE、逆冲兼平移型运动方式;结合等震线走向及震中主要断层性质,判断NE向沿河断层为本次地震主震的发震构造,并进一步推测此次地震为水库诱发断层活化引起的地震。  相似文献   

10.
利用四川数字地震台网和流动地震台站在芦山MS7.0地震震后(2013年4月20日—6月23日)记录到的2026次区域地震事件的28188条P波到时资料,采用地震层析成像方法反演得到了芦山地震震源区及其周边区域中上地壳P波三维速度结构. 结果表明,浅部地壳的P波速度异常分布特征与地表地质构造、 地形和岩性密切相关,即成都断陷盆地表现出与第四纪沉积有关的低速异常区;犍为、 乐山一带的川中微升区和川青块体龙门山以西的邻近地带均表现为与构造抬升有关的高速异常;宝兴、 康定附近分布的基性火山岩及火山碎屑岩均呈局部高速异常分布. 芦山地震震源位于高低速异常分界线附近且偏向高速体一侧,其下方存在明显的低速异常分布,可能与流体的存在有关. 流体的作用导致中上地壳内部发震层的弱化,使孕震断层易于破裂,可能对芦山地震起到了触发作用. 芦山地震与汶川地震两次地震的余震密集区相距50 km,这50 km地震空区震源体的深度范围附近目前正处于高速异常区内,加之龙门山断裂带西南段又具有比较典型的断错地貌发育,使得该段地震空区(大邑—邛崃活动断裂破裂空段)现在所处的深浅部构造环境变得复杂,其潜在的地震危险性仍值得进一步关注.   相似文献   

11.
2013年4月20日在龙门山南段发生M_W6.7强震,造成重大人员伤亡和财产损失.芦山地震发生后,针对发震断层是高角度还是低角度断层?断层的归属、性质和地震构造模型等问题,一直存在不同的认识和争议.本次研究采用了芦山震区的三条高精度二维人工地震反射剖面,结合区域地质、钻井资料,对芦山震区浅层沉积与构造变形进行综合解释;研究同时综合了震源机制解、小震重定位结果以及深地震探测剖面,并结合龙门山地区古生代以来的构造演化史,对震区地质构造进行解析.研究认为龙门山南段主要发育了三套不同层次的滑脱层并控制了上地壳形变,呈现多层滑脱、多期变形、构造叠加的复杂特征.2013年芦山地震的主要活动断层发育在深部约20 km滑脱层之上,倾向NW、倾角较陡大约在45°~50°,并产生反冲断层形成Y字状结构.地震地质解释表明,芦山地震的同震活动断层没有突破中生界和新生界,并非先前认为的双石—大川断裂(F4)或山前大邑隐伏断裂(F6);芦山地震的发震断层为一基底盲冲断层;深地震反射结果进一步揭示芦山地震的发震断层为一早期(古生代)形成的正断层.研究认为芦山地震发震构造符合简单剪切断层转折褶皱模型(Simple-shear Fault-Bend Fold),2013年芦山地震为一次非特征型地震.晚新生代以来在青藏高原向四川盆地强烈挤压持续作用下,早期正断层重新活动并产生了芦山地震.这种深部隐伏断层活化产生的特殊型地震,无疑增加了龙门山地区地震灾害的风险和不确定性.  相似文献   

12.
玛纳斯地震区地壳浅部构造特征探测研究   总被引:10,自引:0,他引:10       下载免费PDF全文
采用高精度的浅层地震勘控方法和先进的数据处理技术,查明了玛纳斯地震区玛纳斯背斜的浅部地壳结构特征,它主要由一个逆掩推覆构造和两个局部背斜组成,存在一条盲断层和两知地表出露断层,结合附近地质资料和钻井资料,确定了每条断层的活动年代,为进一步研究该区的深浅部构造之间的关系和玛纳斯地震的发震机制提供了可靠的浅层资料  相似文献   

13.
The 2008 Wenchuan earthquake occurred along the Longmen Shan fault zone, only five years later, another M7 Lushan earthquake struck the southern segment where its seismic risk has been highly focused by multiple geoscientists since this event. Through geological investigations and paleoseismic trenching, we suggest that the segment along the Shuangshi-Dachuan Fault at south of the seismogenic structure of the Lushan earthquake is active during Holocene. Along the fault, some discontinuous fault trough valleys developed and the fault dislocated the late Quaternary strata as the trench exposed. Based on analysis of historical records of earthquakes, we suggest that the epicenter of the 1327 Tianquan earthquake should be located near Tianquan and associated with the Shuangshi-Dachuan Fault. Furthermore, we compared the ranges of felt earthquakes(the 2013 M7 Lushan earthquake and the 1970 MS6.2 Dayi earthquake)and suggest that the magnitude of the 1327 Tianquan earthquake is more possible between 6½ and 7. The southern segment of the Longmen Shan fault zone behaves as a thrust fault system consisting of several sub-paralleled faults and its deep structure shows multiple layers of decollement, which might disperse strain accumulation effectively and make the thrust system propagate forward into the foreland basin, creating a new decollement on a gypsum-salt bed. The soft bed is thick and does not facilitate to constrain fault deformation and accumulate strain, which produces a weak surface tectonic expression and seismic activity along the southern segment, this is quite different from that of the middle and northern segments of the Longmen Shan fault zone.  相似文献   

14.
Basined on comprehensive prospecting and investigation, the authors have ascertained that the 1679 San-he-Pinggu M = 8 earthquake occurred in the intersection region of active faults having deep-seated structural background. The NE-trending New Xiadian Fault, which was characterized by dextrall tensile-shear dislocation, was the seismogenic fault of the 1679 M = 8 earthquake. It is suggested that the macroscopic epicenter of the earthquake should be located in Pangezhuang area, where the vertical displacement of seismic faul' was up to 3.16m. According to the average seismic slip rate in this area, and the displacement value of earthequake with a certain magnitude, the recurrence interval of M = 7.5, M=7.0 and M = 8.5 earthquakes in the magistoseismic area of 1679 M = 8 earthquake on Xiadian Fault Zone have been estimated to be 3800,1750, and 800 years (the lower limit), respectively  相似文献   

15.
A magnitude 7(3/4) earthquake happened in Linfen, Shanxi, on May 18, 1965(the 34th year of Qing Emperor Kangxi). In the Catalogue of Chinese Historical Strong Earthquakes, the epicenter of this earthquake is located at the northwest of Zhangli Village of Xiangfen County and Dongkang Village of Yaodu District, Linfen City(36.0°N, 111.5°E), and the epicentral intensity is Ⅹ. It was inferred by previous studies that Guojiazhuang Fault is the seismogenic structure of the earthquake. In this paper, in cooperation with the Archives of Linfen City and Earthquake Administration of Linfen, the author looked up in details the first-hand materials of the earthquake damage to the ancient town of Linfen and its surrounding areas, and based on this, drew the isoseismals of the earthquake. Through discussions with relevant experts, we consider that it would be more appropriate that the location of the macroscopic epicenter of this earthquake is in Donguan area of the ancient town of Linfen, the epicentral intensity is Ⅺ, and the major axis of the isoseismals is in NWW. Later, in the implementation of "Linfen city active fault detection and seismic risk evaluation", we found two earthquake fault outcrops near the macroscopic epicentral area of the 1695 Linfen earthquake. Shallow seismic exploration lines and drill rows perpendicular to the strike of the fault outcrops were arranged to implement the exploration. The results demonstrate that the right-lateral stepover composed of Guojiazhuang Fault and Liucun Fault, together with the Luoyunshan Fault(Longci segment), were involved in the 1695 Linfen earthquake, the intersection of the faults is the microscopic epicenter of the earthquake, and the above-mentioned three faults are the seismogenic structure of the earthquake. In addition, the seismic geological remains in this region(landslides, earthquake ground cracks, sand emitting channels, etc.) are mainly distributed on the hanging wall of the Guojiazhuang Fault, this proves from another perspective that the earthquake remains is the product of activity of Guojiazhuang Fault in 1695.  相似文献   

16.
Study of historical earthquake is one of the important methods to understand the seismic activities and analyze the seismogenic faults. On the May 25th, 1568 AD, a destructive earthquake occurred to the northeast of the present-day city of Xi'an, Shaanxi Province. Because this earthquake happened shortly after the 1556 M8 earthquake and was regarded as an aftershock, it has received little attention in previous studies. Previous earthquake catalogue agreed in assigning a magnitude 6 3/4 to this earthquake but had different epicentral locations and seismic intensity, and the seismogenic structure remains ambiguous. Based on textual research of historical earthquake and field investigation, the Jingyang County, Gaoling County, and Xianning County, were the worst hit area by the earthquake, and the areas, including Yongle Town, Gaozhuang Town at southeastern Jingyang County to Gaoling County and its southeastern present-day Jijia and Zhangbu, should be the mesoseismal area of this earthquake. The epicenter intensity of this earthquake is Ⅸ+(9~10 degrees), and the magnitude is estimated to be 7. The isoseismal lines were drawn to exhibit the various intensities of the areas damaged during the event, with its major axis directed NWW. Intensities reached Ⅸ+ in the zone extending west-northwest parallel to the Weinan-Jingyang Fault. This fault, characterized by a normal fault that developed during the Cenozoic extensional history of the Weihe Basin, dipping to the north at an angle of 60°~80°, is one part of the southern boundary faults in Weihe graben. There are geomorphological and geological evidences of recent activity of the fault during (180±30)a BP to (1 600±30)a BP. At T1-T2 fluvial terraces on the north bank of Weihe River, the scarps were faulted during Ming Dynasty, and sandy soil liquefaction, dense structural tensional fissures and faulted strata are noted in stratigraphic profiles and trenches. Thus, we suggest that this fault can reliably be regarded as being active during Holocene, and re-name the earthquake as the Shaanxi Gaoling earthquake.  相似文献   

17.
Based on the rupture models of the 2015 Pishan MW6.4 earthquake and half space homogeneous elastic model, the Coulomb stress changes generated by the earthquake are calculated on the active faults near the earthquake region. The horizontal stress changes and the displacement field are estimated on the area around the epicenter. Results show that:(1)The Coulomb stress is decreased in the west of the western Kunlun frontal thrust fault(9.5×103Pa), and increased in the east of the western Kunlun frontal thrust fault and the middle of the Kangxiwa faults. More attention should be taken to the seismic rick of the east of the western Kunlun frontal thrust fault; (2)Based on the analysis on the location of the aftershocks, it is found that most of the aftershocks are triggered by the earthquake. In the region of increased Coulomb attraction, the aftershock distribution is more intensive, and in the area of the Coulomb stress reduction, the distribution of aftershocks is relatively sparse; (3)The horizontal area stress increases in the north and south of the earthquake(most part of the Qaidam Basin and the northwest of the Qinghai-Tibet plateau), and decreases in the east and west of the earthquake(northern part of the Qinghai-Tibet plateau and eastern part of the Pamir Mountains). In the epicenter area, the principal compressive stress presents nearly NS direction and the principal extensional stress presents nearly EW direction. The principal compressive stress shows an outward radiation pattern centered on the epicenter with the principal extensional stress along the direction of concentric circles. The principal compressive stress presents NW direction to the west of the epicenter, and NE to the east of the epicenter. With the increase of radius, the stress level gradually decays with 107Pa in the epicenter and hundreds Pa in the Maidan Fault which is in the north of the Qaidam Basin.  相似文献   

18.
At 3:05, September 4, 2017, an ML4.4 earthquake occurred in Lincheng County, Xingtai City, Hebei Province, which was felt obviously by surrounding areas. Approximately 60km away from the hypocenter of Xingtai MS7.2 earthquake in 1966, this event is the most noticeable earthquake in this area in recent years. On the one hand, people are still shocked by the 1966 Xingtai earthquake that caused huge disaster, on the other hand, Lincheng County is lack of strong earthquakes. Therefore, this quake has aroused widespread concerns by the government, society and seismologists. It is necessary to clarify whether the seismogenic structure of this event is consistent with the previous seismicity and whether it has any new implications for the seismic activity and seismic hazard in this region. Therefore, it is of great significance to study its seismogenic mechanism for understanding the earthquake activity in Xingtai region where a MS7.2 earthquake had occurred in 1966. In this study, the Lincheng earthquake and its aftershocks are relocated using the multi-step locating method, and the focal mechanism and focal depth are determined by the "generalized Cut and Paste"(gCAP)method. The reliability of the results is analyzed based on the data of Hebei regional seismic network. In order to better constrain the focal depth, the depth phase sPL fitting method is applied to the relocation of focal depth. The inversion and constraint results show that aftershocks are mainly distributed along NE direction and dip to SE direction as revealed by depth profiles. Focal depths of aftershocks are concentrated in the depths of 6.5~8.2km with an average of about 7km. The best double-couple solution of the mainshock is 276°, 69° and -40° for strike, dip and slip angle for nodal plane I and 23°, 53° and -153° for nodal plane Ⅱ, respectively, revealing that it is a strike-slip event with a small amount of normal-fault component. The initial rupture depth of mainshock is about 7.5km obtained by the relocation while the centroid depth is 6km derived from gCAP method which was also verified by the seismic depth phase sPL observed by several stations, indicating the earthquake is ruptured from deep to shallow. Combined with the research results on regional geological structure and the seismic sequence relocation results, it is concluded that the nodal plane Ⅱ is the seismogenic fault plane of this earthquake. There are several active faults around the hypocenter of Lincheng earthquake sequence, however, none of the known faults on the current understanding is completely consistent with the seismogenic fault. To determine the seismogenic mechanism, the lucubrated research of the MS7.2 Xingtai earthquake in 1966 could provide a powerful reference. The seismic tectonic characteristics of the 1966 Xingtai earthquake sequence could be summarized as follows:There are tensional fault in the shallow crust and steep dip hidden fault in the middle and lower crust, however, the two faults are not connected but separated by the shear slip surfaces which are widely distributed in the middle crust; the seismic source is located between the hidden fault in the lower crust and the extensional fault in the upper crust; the earthquake began to rupture in the deep dip fault in the mid-lower crust and then ruptured upward to the extensional fault in the shallow crust, and the two fault systems were broken successively. From the earthquake rupture revealed by the seismic sequence location, the Lincheng earthquake also has the semblable feature of rupturing from deep to shallow. However, due to the much smaller magnitude of this event than that of the 1966 earthquake, the accumulated stress was not high enough to tear the fracture of the detachment surface whose existence in Lincheng region was confirmed clearly by the results of Lincheng-Julu deep reflection seismology and reach to the shallower fault. Therefore, by the revelation of the seismogenic mechanism of the 1966 Xingtai earthquake, the seismogenic fault of Lincheng earthquake is presumed to be a concealed fault possessing a potential of both strike-slip and small normal faulting component and located below the detachment surface in Lincheng area. The tectonic significance indicated by this earthquake is that the event was a stress adjustment of the deep fault and did not lead to the rupture of the shallow fault. Therefore, this area still has potential seismic hazard to a certain extent.  相似文献   

19.
唐山地震深浅构造关系研究   总被引:24,自引:5,他引:24       下载免费PDF全文
地表观察和浅层高分辨率地震探测表明 ,唐山断裂与地震地表主破裂带的位置、产状均一致 ,且具有高角度西倾的逆冲走滑性质 ,发生过右旋水平错动和向东逆冲的垂直活动 ,而次破裂带与褶皱构造活动引起的其他断裂直接相关。根据瞬变磁场和深地震探测结果分析 ,唐山地区存在莫霍面斜坡和地壳“背斜”、中地壳水平滑脱和扩展断裂、上地壳高角度逆冲走滑断裂和背向斜构造 ,它们组成 1幅多层次、多级序的复式逆断裂 -扩展背斜构造图像 ,控制了唐山地震的孕育和发生  相似文献   

20.
In 1585, a Ms53/4 earthquake occurred in the south of Chaoxian county, Anhui Province. The parameters of this earthquake were reported differently in various versions of earthquake catalogues. According to detailed textual research on the historic records of this earthquake, the epicenter location of the earthquake was further confirmed by means of seismo-geological field investigations in the Chaohu-Tongling region along the western Yangtze River valleys. Shallow seismic prospecting and drilling methods were applied in studying the buried fault. The possibility of the existence of seismogenic faults and fault activity in the western Yangtze River area were analyzed in depth, and the causative tectonic background of the 1585 Ms53/4 south Chaoxian earthquake was studied. The results of this study indicate that the Yanjiaqiao-Fengshahu fault, which was active in the early to mid-Pleistocene, is possibly the causative structure of this earthquake.To identifying the seismogenic structure of the 1585 south Chaoxian earthquake will help gain more knowledge about the tectonic background of moderate and small earthquake activity in Eastern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号