首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Preparation and characterization of novel polysulfone/zinc oxide (PSf/ZnO) mixed matrix membranes (MMMs) with different ZnO loadings for high selective CO2/CH4 separation were aimed in this study. Scanning electron microscopy photographs demonstrated that spongy and small tear like pores in plain PSf membrane (0 wt % of ZnO) replaced with large tear like pores close to surface layer by increasing ZnO content up to 0.1 and 1 wt %. In contrast, a dense and less free volume structure was obtained in membranes having 3 and 5 wt % of ZnO. Membrane porosity increased from 28.68 to 50.51% with increasing ZnO content from 0 to 1 wt %. Then, a reduction in porosity was observed for membranes containing 3 and 5 wt % of ZnO. Atomic force microscopy images presented variation in membrane surface roughness. Surface roughness decreased from 67.64 nm for plain PSf to 47.86 nm for membrane containing 1 wt % of ZnO. While, surface roughness increased and reached to 115.5 and 122.4 nm for MMMs having 3 and 5 wt % of ZnO. Gas separation properties of PSf/ZnO MMMs were examined and CO2/CH4 selectivity of MMMs containing 3 and 5 wt % of ZnO were 22.29 and 54.29, respectively, in 1 bar feed pressure. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39745.  相似文献   

2.
Mixed Matrix Membranes (MMMs) of UiO-66-NH2 nanoparticles dispersed in Cellulose Acetate (CA) were prepared with filler loading of 2–20 wt%. MMMs were tested for the upgradation of model biogas (60%–40%) mixture of CH4/CO2 at a feed pressure of 2 bar and 1.5 bar. Detailed characterization of MMMs was performed with Fourier transform infrared spectroscopy (FTIR), Thermo-gravimetric analysis (TGA), Differential scanning calorimetry (DSC), and Field emission scanning electron microscopy (FESEM) to investigate the physical and thermal properties. MMMs formed are defects-free, voids-free, and without polymer rigidification, indicating a better filler polymer interface. MMMs showed improved CO2 permeability while retaining the CO2/CH4 selectivity. The 10 wt.% UiO-66-NH2/CA MMM showed optimum gas separation performance with CO2 permeability of 11 Barrer and CO2/CH4 selectivity of 10. The UiO-66-NH2/CA MMMs performed better when compared to the pure CA membrane. The experimental permeability and selectivity data were compared with the predicted data using Maxwell, Lewis–Nielsen, Higuchi, and Bruggeman's model.  相似文献   

3.
In this study, mixed matrix membranes (MMMs) were prepared using commercially available poly(ether‐b‐amide) (Pebax2533) as polymer matrix and organically modified montmorillonite (OMMt) as filler with the aim of investigating their gas permeation properties. The prepared membranes were characterized by Fourier‐transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), scanning electron microscope (SEM), thermal gravimetric analysis, and tensile strength analyses. Gas permeation properties of all the prepared membranes were evaluated at different pressures and clay loadings. Results of FTIR and SEM confirmed the appropriate adhesion between polymer and nanoclays so that no void formation was observed in the polymer/clay interface. XRD results showed that in low loading, clay dispersion occurred as exfoliated‐intercalated and at high loading as intercalated‐phase separated. Results of gas permeation test showed that by adding layered and impermeable clay particles to the polymer matrix, the permeation of soluble CO2 gas reduced by 28% for the highest clay loading. By increasing of pressure from 2 to 6 bar, CO2/CH4 permselectivity increased at all nanoclay loadings. The highest CO2/CH4 selectivity was obtained for 6 wt % clay MMM at all pressures, while the highest CO2/H2 selectivity was achieved for neat polymer at 6 bar. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45302.  相似文献   

4.
《分离科学与技术》2012,47(8):1261-1271
Membrane composed of PC as base of polymer matrix with different ratio of multiwall carbon nano tubes (MWCNTs) as nanofillers and poly ethylene glycol (PEG) as second polymer was prepared by solution casting method. Both raw-MWCNTs (R-MWCNTs) and functionalized carboxyle-MWCNTs (C-MWCNTs) were used in membrane preparation. The MWCNTs loading ratio and pressure effects on the gas transport properties of membranes were examined in relation to pure He, N2, CH4, and CO2 gases. Results showed that the use of C-MWCNT instead of R-MWCNTs in mixed matrix membranes (MMMs) fabrication with base of PC provides better performance and also it increases (CO2/CH4) and (CO2/N2) selectivities to 27.38 and 25.42 from 25.45 and 19.24, respectively (at 5 wt% of MWCNTs). PEG as the second rubbery polymer was utilized to improve the separation performance and mechanical properties. In blend MMMs, highest (CO2/CH4) selectivity at 2 bar pressure increased to 35.64 for PC/PEG/C-MWCNT blend MMMs which was 27.28 for PC/MWCNTs MMMs at 10 wt%. Increase of feed pressure led to gas permeability and gas pair selectivity improvement in approximately all of membranes. Analysis of mechanical properties showed improvement in tensile modules with the increase of MWCNTs loading ratio and use of PEG in prepared MMMs.  相似文献   

5.
Poly vinyl chloride/multi wall carbon nano tubes (PVC/MWCNTs) mixed matrix membranes (MMMs) were prepared for gas separation. Raw and functionalized MWCNTs (R-MWCNTs and C-MWCNTs) were utilized in membranes preparation. The C-MWCNT shows better performance compared to raw ones. Membrane (CO2/CH4) selectivity was increased from 39.21 to 52.18 at 2 bar pressure by MWCNT loading ratio. The modified membranes with styrene butadiene rubber (SBR-MMMs) showed 63.52 and 34.70 selectivity for (CO2/CH4) and (CO2/N2) at 2 bar pressure. Mechanical properties analysis exhibited tensile module improvement utilizing blending modification. Increase of feed pressure led to membrane gas permeability decreasing. But gas pair selectivity follows a nearly constant behavior for MMMs and increasing behavior for blend MMMs.  相似文献   

6.
[Cellulose acetate (CA)-blend-multi walled carbon nano tubes (MWCNTs)] mixed matrix membranes (MMMs), [CA/polyethylene glycol (PEG)/MWCNTs] and [CA/styrene butadiene rubber (SBR)/MWCNTs] blend MMMs were prepared by solution casting method for gas separation applications using Tetrahydrofuran (THF) as solvent. Both raw-MWCNTs (R-MWCNTs) and functionalized carboxylic-MWCNTs (C-MWCNTs) were used in membrane preparation. The MWCNTs loading ratio and pressure effects on the gas separation performance of prepared membranes were investigated for pure He, N2, CH4 and CO2 gases. Results indicated that utilizing C-MWCNT instead of R-MWCNTs in membrane fabrication has better performance and (CO2/CH4) and (CO2/N2) selectivity reached to 21.81 and 13.74 from 13.41 and 9.33 at 0.65 wt% of MWCNTs loading respectively. The effects of PEG and SBR on the gas transport performance and mechanical properties were also investigated. The highest CO2/CH4 selectivity at 2 bar pressure was reached to 53.98 for [CA/PEG/C-MWCNT] and 43.91 for [CA/SBR/C-MWCNT] blend MMMs at 0.5 wt% and 2 wt% MWCNTs loading ratio respectively. Moreover, increase of feed pressure led to membrane gas permeability and gas pair selectivity improvement for almost all prepared membranes. The mechanical properties analysis exhibited tensile modules improvement with increasing MWCNTs loading ratio and utilizing polymer blending.  相似文献   

7.
Metal–organic framework (MOF) incorporated mixed–matrix membranes (MMMs) attract great interest for gas separation applications because they overcome limitations faced by typical polymer membranes, including permeability–selectivity trade-off, aging effect, and plasticization phenomenon. However, optimal MOF–polymer interface compatibility is the key challenge in fabricating defect-free high-performance gas-separation MMMs. Here, a surface modification strategy of the UiO-66-NH2 MOF using a covalently bound PIM-PI-oligomer is developed to engineer interface compatibility with the polymer that has an identical chemical structure (PIM-PI-1) in the MMMs. A series of MMMs are prepared with different loadings of homogeneously distributed PIM-PI-functionalized MOFs (PPM). Significant improvements in CO2/N2 and CO2/CH4 selectivity and permeability are achieved with these MMMs, ranging from 5 to 10 wt% of the PPM loadings. The MMM with 10 wt% loading (PPM-10@MMM) shows a CO2 permeability of 3827.3 Barrer and a CO2/N2 and CO2/CH4 selectivity of 24 and 13.4, respectively. This surpasses the 2008 Robeson upper bound for CO2/N2 and is very close to the 2008 upper bound for CO2/CH4. The experimental results are further compared using Maxwell's equation for MMMs. The resulting MMMs show a plasticization resistance against CO2 up to 25 atm pressure and anti-aging performance for 180 h.  相似文献   

8.
Investigations on nanocomposite membranes imply that these hybrid materials recommend promising newgeneration membranes for gas separation in future. In this study, to investigate the effects of preparation parameters on the morphology and gas transport, various parameters including nanofiller content, surface modification and polymer concentration were considered. Two types of fumed silica nanoparticles (nonmodified and modified) were used to study the surface modification effect on agglomeration, void formation and gas separation properties of prepared membranes. Prepared nanocomposite membranes were characterized by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and tensile strength techniques. The gas permeabilities of hydrogen, methane, and carbon dioxide through pure PSf and nanocomposites were measured as a function of silica volume fraction, and permeability coefficients were determined using a variable pressure/constant volume experimental setup. Results showed that gas permeabilities increase with silica content, and proper H2/CH4 and H2/CO2 selectivities can be achieved with modified type of silica nanoparticles due to inhibition of particle agglomeration and bonding with polymer network. Hydrogen selectivity was improved by using 15 wt% polymer content instead of 9 wt% in preparation of nanocomposite membrane with same silica content. Gas permeation results indicated that increasing of feed pressure from 3 bar to 6 bar has a positive effect on selectivity of H2/CH4 but negligible effect on that of H2/CO2 for modified silica/PSf membrane.  相似文献   

9.
Branched polyethyleneimine (PEI) functionalized UiO-66 were synthesized and used as fillers to fabricated mixed-matrix membranes (MMMs) for CO2/CH4 separation. The purpose of introducing amino-functional groups in the filler is to improve the interfacial compatibility of the filler with the polymer through the formation of hydrogen bonds with the carbonyl group of 6FDA-ODA. Additionally, the amino group can facilitate CO2 transport through a reversible reaction, enhancing the CO2/CH4 separation properties of MMM. The chemical structure and morphology of fillers and membranes were characterized by employing X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), thermogravimetric (TGA), Derivative thermogravimetry (DTG) and scanning electron microscope (SEM). Furthermore, the effects of filler loading and feed pressure on CO2 permeability and CO2/CH4 selectivity have been investigated. MMMs present higher gas separation performance than pure 6FDA-ODA due to the presence of amino groups and the improvement of interface morphology. In particular, the MMM with 15 wt% loading of UiO-66-PEI shows optimum CO2 permeability of 28.23 Barrer and CO2/CH4 selectivity of 56.49. Therefore, post-synthetic modification of UiO-66 particle with PEI is a promising alternative to improved membrane performance.  相似文献   

10.
Enhancing the performance of gas separation membranes is one of the major concerns of membrane researchers. Thus, in this study, poly(ether-block-amide) (Pebax)/polyetherimide (PEI) thin-film composite membranes were prepared and their CO2/CH4 gas separation performance was investigated by means of pure and mixed gases permeation tests. To improve the properties of these membranes, halloysite nanotubes (HNT) were added to Pebax layer at different loadings of 0.5, 1, 2, and 5 wt % to form Pebax-HNT/PEI membranes. Scanning electron microscopy, gas sorption, X-ray diffraction, Fourier-transform infrared, and differential scanning calorimetry tests were also performed to investigate the impact of HNT on structure and properties of prepared membranes. Results showed that both CO2/CH4 selectivity and CO2 permeance increased by adding HNT to Pebax layer up to 2 wt %. By increasing HNT loading to 5 wt %, the CO2/CH4 selectivity decreased from 32 to 18, while CO2 permeance increased from 3.25 to 4.2 GPU. Pebax/PEI and Pebax-HNT/PEI membranes containing 2 wt % of HNT were tested using CO2/CH4 gas mixtures at different feed CO2 concentrations and feed pressure of 4 bar. The results showed that with increasing CO2 concentration from 20 to 80 vol %, CO2/CH4 selectivity of Pebax/PEI composite membranes increased by 19%, while, in Pebax-HNT/PEI membrane, CO2/CH4 selectivity decreased by 40%. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48860.  相似文献   

11.
《Polymer Composites》2017,38(7):1363-1370
Mixed matrix membranes offer major advantages in gas separation processes due to desirable properties found in both organic and inorganic membranes. In this study, a novel mixed matrix membrane was prepared for such application by incorporating iron benzene‐1,3,5‐tricarboxylate (Fe‐BTC) into the poly(amide‐6‐b‐ethylene oxide) (Pebax1657) polymer. Membranes with various loadings of 5, 10, and 20 wt% Fe‐BTC in the polymer matrix were fabricated to investigate the effect of filler loading on the membrane performance. Membranes, prepared by solution‐casting were characterized by scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared, X‐ray diffraction, and tensile test. Pure gas separation of CO2, CH4, and N2 and ideal gas selectivity of CO2/CH4 and CO2/N2 were performed and permeation tests were carried out under 4, 8, and 12 bar pressures. Results show that adding Fe‐BTC into the Pebax1657 matrix improved both permeability and selectivity of the filled membranes. For instance, 10 wt% loading of Fe‐BTC into the Pebax1657 matrix led to CO2 permeability increase of 49% as well as CO2/CH4 and CO2/N2 selectivities enhancements of about 36% and 16%, respectively. POLYM. COMPOS., 38:1363–1370, 2017. © 2015 Society of Plastics Engineers  相似文献   

12.
This study is focused on the development of ionic liquids (ILs) based polymeric membranes for the separation of carbon dioxide (CO2) from methane (CH4). The advantage of ILs in selective CO2 absorption is that it enhances the CO2 selective separation for the ionic liquid membranes (ILMs). ILMs are developed and characterized with two different ILs using the solution‐casting method. Three different blend compositions of ILs and polysulfone (PSF) are selected for each ILMs 10, 20, and 30 wt %. Effect of the different types of ILs such as triethanolamine formate (TEAF) and triethanolamine acetate (TEAA) are investigated on PSF‐based ILMs. Field emission scanning electron microscopy analysis of the membranes showed reasonable homogeneity between the ILs and PSF. Thermogravimetric analysis showed that by increasing the ILs loading thermal stability of the membranes improved. Mechanical analysis on developed membranes showed that ILs phase reduced the amount of plastic flow of the PSF phase and therefore, fracture takes place at gradually lower strains with increasing ILs content. Gas permeation evaluation was carried out on the developed membranes for CO2/CH4 separation between 2 bar to 10 bar feed pressure. Results showed that CO2 permeance increases with the addition of ILs 10–30 wt % in ILMs. With 20–30 wt % TEAF‐ILMs and TEAA‐ILMs, the highest selectivity of a CO2/CH4 53.96 ± 0.3, 37.64 ± 0.2 and CO2 permeance 69.5 ± 0.6, 55.21 ± 0.3 is observed for treated membrane at 2–10 bar. The selectivity using mixed gas test at various CO2/CH4 compositions shows consistent results with the ideal gas selectivity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45395.  相似文献   

13.
Polysulfone (PSf) membrane shows acceptable gas separation performance, but its application is limited by the “trade-off” between selectivity and permeability. In this study, PSf mixed matrix membranes (MMMs) incorporated with palladium (Pd) nanoparticles in the inversed microemulsion were proposed for hydrogen (H2) separation. Pd nanoparticles can be kinetically stabilized and dispersed using electrostatic and/or steric forces of a stabilizer which is typically introduced during the formation of Pd nanoparticles in the inversed microemulsion. Pd nanoparticles were synthesized by loading (PdCl2) into the polymeric matrix, polyethylene glycol (PEG) which acts as reducing agent and stabilizer. The dry–wet phase inversion method was applied for the preparation of asymmetric PSf MMMs. The effects of Pd (0–4 wt%) on the membrane characteristics and separation performance were studied. Experimental findings verified that the MMMs are able to achieved a high H2/N2 selectivity of 21.69 and a satisfactory H2 permeance of 46.24 GPU due to the changes in membrane structure from fully developed finger-like structure to closed cell structure besides the growth of dense layer. However, the selectivity of H2/CO2 decreased due to the addition of PEG.  相似文献   

14.
Gas separation process is an effective method for capturing and removing CO2 from post-combustion flue gases. Due to their various essential properties such as ability to improve process efficiency, polymeric membranes are known to dominate the market. Trade-off between gas permeability and selectivity through membranes limits their separation performance. In this study, solution casting cum phase separation method was utilized to create polyethersulfone-based composite membranes doped with carbon nanotubes (CNTs) and silico aluminophosphate (SAPO-34) as nanofiller materials. Membrane properties were then examined by performing gas permeation test, chemical structural analysis and optical microscopy. While enhancing membranes CO2 permeance, SAPO-34 and CNTs mixture improved their CO2/N2 selectivity. By carefully adjusting membrane casting factors such as filler loadings. Using Taguchi statistical analysis, their carbon capture efficiency was improved. The improved mixed-matrix membrane with loading of 5 wt% CNTs and 10 wt% SAPO-34 in PES showed highly promising separation performance with a CO2 permeability of 319 Barrer and an ideal CO2/N2 selectivity of 12, both of which are within the 2008 Robeson upper bound. A better mixed-matrix membrane with outstanding CO2/N2 selectivity and CO2 permeability was produced as a result of the synergistic effect of adding two types of fillers in optimized loading.  相似文献   

15.
Polymer/nanoparticle mixed matrix membranes (MMMs) is one of the most important topics in gas separation field. In this study, to improve gas separation efficiency, methoxy poly(ethylene glycol) methacrylate (MPEG) was grafted on TiO2 surface and was used for synthesis of poly (methyl methacrylate) (PMMA) MMMs. Gas permeation and separation properties of PMMA/PMPEG-TiO2 MMMs were studied for CO2, CH4, O2, and N2 gases. The results showed that the MMM filled with 5 wt% PMPEG-TiO2 nanoparticle exhibited optimal separation performance with CO2 permeability of 32.48 Barrer and CO2/N2 selectivity of 56.98, which are higher than pure polymer (2.75 Barrer and 36.71).  相似文献   

16.
Incorporation of inorganic fillers into Polysulfone (PSF) to constitute mixed matrix membranes (MMMs) has become a viable solution to prevail over limitations of the pristine materials in natural gas sweetening process. Nevertheless, preparation of MMMs without defects and empirical investigation of membrane that exhibits characteristic of improved CO2/CH4 separation performance at experimental scale are difficult that require prior knowledge on compatibility between the filler and polymer. A computational framework has been conducted to construct validated PSF based MMMs using silica (SiO2) as inorganic fillers. It is known that nanosized SiO2 can coexist in varying polymorph configurations (ie, α-Quartz, α-Cristobalite, α-Tridymite) but molecular simulation study of SiO2 polymorphs to form MMMs is limited. Therefore, this work is a pioneering study to elucidate feasibility in facile utilization of polymorphs to improve gas separation performance of MMMs. Physical properties and gas transport behavior of the simulated PSF based MMMs with different SiO2 polymorphs and loadings have been elucidated. The optimal MMM has been found to be PSF/25 wt% α-Cristobalite at 55°C. The success in molecular simulation has shed light on how computational tools can provide understandings at molecular level to elucidate compatibility between varying pristine materials to MMMs for natural gas processing.  相似文献   

17.
Mixed matrix membranes (MMMs) for CO2-facilitated separation were prepared by incorporating different surface-modified multiwalled carbon nanotubes (MWCNTs) in a fixed carrier membrane material. Polymer containing amino groups, poly(vinylalcohol-co-vinylamine) (VA-co-VAm) was synthesized as polymeric matrix. MWCNTs as well as MWCNTs surface-modified with  OH and  NH2 were applied as nanofillers. The physical property, chemical structure, and membrane morphology were characterized by FT-IR, TG, XRD, DSC, CA, XPS, and SEM. The effects of content, functional group, temperature, and pressure on gas permselectivity were studied. Results show that the incorporation of nanofillers can effectively restrict the polymer chain packing and lead to low crystallinity. The MMMs exhibited higher CO2 permselectivity than the pure polymeric membrane. For all the MMMs, the CO2 permeance and selectivity increased with MWCNTs contents to a maximum and then decreased. MWCNT-NH2 can be regarded as the most effective nanofiller. MMMs with 2.0 wt % MWCNT-NH2 displayed the highest CO2 permeance of 132 GPU and CO2/N2 selectivity of 74. Both CO2 permeance and selectivity were decreased with feed gas pressure and temperature. The membrane exhibited good stability in the testing with the binary gas mixtures of CO2/N2 for 110 h under 0.54 MPa. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47848.  相似文献   

18.
In theory, the combination of inorganic materials and polymers may provide a synergistic performance for mixed‐matrix membranes (MMMs); however, the filler dispersion into the MMMs is a crucial technical parameter for obtaining compelling MMMs. The effect of the filler distribution on the gas separation performance of the MMMs based on Matrimid®‐PEG 200 and ZIF‐8 nanoparticles is demonstrated. The MMMs were prepared by two different membrane preparation procedures, namely, the traditional method and non‐dried metal‐organic framework (MOF) method. In CO2/CH4 binary mixtures, the MMMs were tested under fixed conditions and characterized by various methods. Finally, regardless of the MMM preparation procedure, the incorporation of 30 wt % ZIF‐8 nanoparticles allowed to increase the CO2 permeability in MMMs. The ZIF‐8 dispersion influenced significantly the separation factor.  相似文献   

19.
Interfacial void‐free mixed‐matrix membranes (MMMs) of polyimide (PI)/zeolite were developed using 13X and Linde type A nano‐zeolites and tested for gas separation purposes. Fabrication of a void‐free polymer‐zeolite interface was verified by the decreasing permeability developed by the MMMs for the examined gases, in comparison to the pure PI membrane. The molecular sieving effect introduced by zeolite 13X improved the CO2/N2 and CO2/CH4 selectivity of the MMMs. Separation tests indicated that the manufactured nanocomposite membrane with 30 % loading of 13X had the highest permselectivity for the gas pairs CO2/CH4 and CO2/N2 at the three examined feed pressures of 4, 8 and 12 atm.  相似文献   

20.
Modified ultra-porous ZIF-8 particles were used to prepare novel ZIF-8/Pebax 1657 mixed matrix membranes (MMMs) on PES support for separation of CO2 from CH4 using spin coating method. TEM and SEM were used to characterize modified ZIF-8 particles. SEM was also used to investigate the morphology of synthesized MMMs. The MMMs with thinner selective layer showed higher CO2 permeability and lower CO2/CH4 selectivity in permeation tests compared to MMMs with thicker selective layer. The plasticization was recognized as the main reason for rise in CO2 permeability and drop in CO2/CH4 selectivity of thinner MMMs. The gas sorption results showed that the high permeability of CO2 in MMMs is mainly due to the high solubility of this gas in MMMs, leading to high CO2/CH4 solubility selectivity for MMMs. The fractional free volume and void volume fraction of MMMs increased as the thickness of membrane decreased. Applying higher mixed feed pressures and permeation tests temperatures resulted in increase in CO2 permeability and decrease in CO2/CH4 selectivity. At highest testing temperature (60 °C), the CO2 permeability of synthesized MMMs with thinner selective layer remarkably increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号