首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
西秦岭中生代花岗岩锆石U-Pb-Lu-Hf同位素特征及地质意义   总被引:1,自引:0,他引:1  
对西秦岭地区中川岩体、柏家庄岩体和教场坝花岗岩体进行LA-ICP-MS锆石U-Pb同位素年代学分析, 获得其岩浆侵位年龄分别为220±1, 216±6和222±3 Ma, 表明3个岩体均形成于中?晚三叠世。样品的全岩地球化学分析结果表明, 3个岩体具有相似的稀土及微量元素特征, 均表现为显著亏损高场强元素Nb, Ti和P等, 具有明显的右倾式球粒陨石标准化稀土元素配分模式。锆石Lu-Hf同位素分析结果表明, 3个岩体锆石测年样品的εHf(t)值介于?3.31~+1.68之间, 二阶段模式年龄介于1151~1456 Ma之间。岩石成因分析表明, 这些印支期花岗岩体的母岩浆主要来源于新元古代地壳物质的部分熔融。结合岩体形成时代、岩石成因和区域岩浆作用, 认为这些岩体形成于南秦岭与华南板块沿勉略缝合带相碰撞的造山动力学背景, 可能与华南板块的俯冲板片断离有关。  相似文献   

2.
The large southern Zhuguangshan granitic batholith composite consists of granites with ages varying from the Caledonian through Indosinian to Yanshanian. Based on K-Ar dating data, the ages of the major parts of this composite were previously regarded as Yanshanian. In this study, the SHRIMP zircon U-Pb dating method has been adopted for six plutons, Ledong, Longhuashan, Dawozi, Zhaidi, Baiyun and Jiangnan, in the southern Zhuguangshan composite, in which the four plutons other than Baiyun and Jiangnan were previously regarded as Yanshanian granites. Magmatic zircons from these six plutons, dated by this study, have yielded ages of 239±5 Ma (MSWD = 2.5), 239±5 Ma (MSWD = 2.5), 239±2 Ma (MSWD = 1.7), 239±4 Ma (MSWD = 3.2), 231±2 Ma (MSWD = 0.81) and 231±3 Ma (MSWD = 1.8), respectively. The results indicate that these plutons were formed by early Indosinian magmatism. Geochemical characteristics suggest that these granites were formed in an extensional tectonic environment. Therefore, the Indosinian period granites in the southern Zhuguangshan composite were formed by partial melting of the Paleo-Mesoproterozoic crustal components during the collapse of thickened lithosphere after the collision between the South China and Indosinian plates.  相似文献   

3.
辽北新宾?苇子峪地区的花岗质岩石主要由英云闪长质?奥长花岗质片麻岩和二长花岗岩?正长花岗岩岩体等组成。为确定其形成年代及成因, 对这些花岗质岩石进行锆石U-Pb-Hf同位素和全岩地球化学分析。锆石LA-ICP-MS U-Pb同位素定年结果表明这些花岗质岩石均形成于新太古代, 英云闪长质和奥长花岗质片麻岩的岩浆结晶年龄分别为2588±4 Ma (MSWD=1.3)和2587±6 Ma (MSWD=1.8), 二长花岗岩?正长花岗岩则侵位于2555±4 Ma (MSWD=0.51)。全岩地球化学和锆石Lu-Hf同位素研究表明, 英云闪长质?奥长花岗质片麻岩形成于俯冲板片的部分熔融, 其原始岩浆在上升过程中受到地幔楔岩石的交代; 而二长花岗岩?正长花岗岩中一部分岩浆起源于变质杂砂岩的部分熔融, 其余形成于以变质玄武岩与变质沉积岩为主要成分的混合源区的部分熔融。结合近年的研究成果, 认为新宾?苇子峪地区的新太古代花岗质岩石可能形成于活动大陆边缘的动力学背景。  相似文献   

4.
Mesozoic granitoids are widespread in the Qinling-Dabie-Sulu orogenic belt. Precise U-Pb dating on these granitoids can reveal the evolution of the continental collision orogen and thus provide information on the nature of magma sources. This study presents zircon LA-ICP-MS U-Pb dating and whole-rock geochemical analyses for two intrusions at Changba and Huangzhuguan in western Qinling. Zircon U-Pb ages for central and marginal phases of the Huangzhuguang intrusion are 214±1 Ma and 213±3 Ma, respectively. Zircons from the Changba intrusion yield a dominant cluster with an U-Pb age of 213±2 Ma. Collectively, these ages are younger than ages of 220 to 240 Ma for ultrahigh-pressure metamorphism due to the continental collision between the South China Block and the North China Block, corresponding to syn-exhumation magmatism. Some inherited zircons occur in the Changba intrusion, yielding a weighted mean of 206Pb/238U ages at 757±14 Ma. This indicates that the Changba intrusion has the crustal source of mid-Neoproterozoic ages and a tectonic affinity to the South China Block. Geochemically, the two intrusuons are both rich in LILE and LREE but depleted in HFSE and HREE, similar to arc-type igneous rocks. The Huangzhuguang intrusion exhibits linear correlations between SiO2 and the other major oxides, implying chemical evolution from a cognate magma source. It contains mafic enclaves, suggesting possible mixing of felsic-mafic magmas. The Changba granite is rich in Si and K but poor in Fe and Mg as well as has a high value of Fe*, suggesting strong differentiation of granitic magma. Therefore, the two intrusions were derived from the Late Triassic anatexis of the continental crust of different compositions in the northern margin of South China Block. This process may be coupled with exhumation of the subducted continental crust in the stage of late collision.  相似文献   

5.
Granite at Penggongmiao is a large batholith in the Nanling Range, with an outcrop area of over 900 km 2 . There are many scheelite-quartz veins around the granite. LA-ICP-MS U-Pb dating was carried out for zircons from the granite. The middlecoarse-grained biotite granite has U-Pb ages of 435 to 436 Ma. Ages of 426.5±2.5 Ma were obtained for aplitic dyke cross-cutting the granite. The scheelite of magmatic origin in the aplite dyke was identified from petrographic investigation. This demonstrates that W-bearing granites of Early Paleozoic (corresponding to the Caledonian orogensis in the traditional sense) occur in the Nanling Range. This finding has important implications for the ore-forming potential of Paleozoic granites and on the extent of Mesozoic mineralization. Thus it merits performing an intensive study of Paleozoic granites in South China. The occurrences of aplite or microgranite may be an indicative of the Caledonian tungsten granites and associated W mineralization.  相似文献   

6.
The Ningzhen region in Jiangsu Province represents the easternmost magmatic region in the middle-lower Yangtze River belt.The formation of the polymetallic deposits has close genetic relationships with Early Cretaceous intermediate-acid intrusions.In this study,LA-ICP-MS zircon geochronology of two Mesozoic intermediate-acid intrusive rocks(including the Shima porphyritic granodiorite and Gaozi quartz diorite porphyry)in the Ningzhen region were systematically investigated.These new geochronological data demonstrate that the intermediate-acid magmatism in the Ningzhen region dates to approximately between 109 and101 Ma.We present new40Ar-39Ar phlogopite ages for the Cishantou skarn iron deposits that constrain the timing of the mineralisation in the Ningzhen region.The phlogopite in the Cishantou skarn deposits yielded a40Ar-39Ar plateau age of 104±1 Ma.This result coincides with the ages of the Anjishan and Tongshan Cu(Mo)deposits in the Ningzhen region.Our high-precision geochronological data together with recent high-precision geochronological studies(such as zircon LA-ICP-MS U-Pb,zircon SHRIMP U-Pb,molybdenite Re-Os and single-mineral40Ar-39Ar dates)reveal that there were four periods(152-135 Ma,135-127 Ma,127-121 Ma,109-101 Ma)of magmatism and ore formation in the middle-lower Yangtze River metallogenic belt.The Mesozoic intermediate-acid magmatism and mineralisation in the Ningzhen region belong to the latest episode in the middle-lower Yangtze River metallogenic belt.  相似文献   

7.
基性岩与金矿成矿关系密切。而针对滇黔桂地区卡林型金矿成矿年龄一直缺乏年代学证据。测得黔西南贞丰水银洞基性岩锆石U-Pb年龄为218±3.2 Ma,与前人对水银洞卡林型金矿年龄的测定一致,说明该区金矿化与基性岩岩浆活动密切相关。该年龄对应印支晚期,并在此基础上提出一种印支期成矿的动力学模型:古特提斯洋封闭导致印支板块与扬子板块碰撞,强大的区域构造事件为矿化提供了动力,形成了贞丰地区218±3.2 Ma的基性岩。另外该地区可能存在一些埋藏的印支期花岗岩侵入体,这些入侵的岩体可作为热源,驱动主要为大气降水成因的流体浸出成矿元素,形成了贞丰水银洞地区卡林型金矿床。  相似文献   

8.
利用锆石LA-ICP-MS U-Pb定年,获得大宁岩体形成年龄为441.1±3.0 Ma,其包体年龄为439.5±3.6 Ma,初洞岩体形成年龄为423.5~434.2 Ma。结果表明,大宁岩体及其包体几乎同期形成,而初洞岩体是后期的侵入体。Lu-Hf同位素研究结果表明,大宁岩体及其暗色包体与初洞岩体具有相似的Hf同位素组成,在εHf(t)-年龄图上落在1440~1960 Ma的老地壳区间,表明三者的岩浆源区均是早元古代到中元古代地壳,暗色包体是岩浆早期分离结晶的产物,而初洞岩体是岩浆结晶分异晚期的产物。  相似文献   

9.
对呈小规模岩株状产出的宁家湾岩体进行野外地质、岩石学、岩石地球化学、锆石U-Pb同位素年代学和Hf同位素组成研究, 目的是确定其岩石成因及地球动力学意义。两件样品的LA-ICP-MS锆石U-Pb定年结果分别为2364±6 Ma (MSWD=0.13)和2360±23 Ma (MSWD =4.0), 属古元古代岩浆活动的产物。研究结果表明, 宁家湾岩体富碱、高K和Si, 具有高FeOT/MgO 比值和高的高场强元素(HFSE)含量, 富集Rb, Ba, Th和U等元素, 具有低的Ca和Mg含量, 明显亏损P和Ti, 具弱轻重稀土分异和强Eu负异常(δEu=0.13~0.36)的海鸥型稀土分配模式, 显示高分异I型花岗岩的特征。较高的Y/Nb值(1.2~2.8)、锆石的εHf(t)均为正值(+1.6~+6.4)以及单阶段模式年龄tDM1(Hf)和二阶段模式年龄tDM2(Hf)分别为2449~2629 Ma和2474~2711 Ma的特点, 表明源区可能为壳幔混合。明显的Nb, P 和 Ti负异常及Ce, Nd和Zr正异常, 反映出大陆边缘弧岩浆岩的特征。结合区域地质背景, 认为宁家湾岩体很可能形成于岛弧构造环境。  相似文献   

10.
为确定与金厂金矿成矿有关的岩浆类型、活动时限和构造背景,采用LA-ICP-MS技术对研究区花岗斑岩开展了锆石U-Pb年龄及原位微区微量元素测定。结果表明:锆石环带发育,wTh/wU值>0.4,具有岩浆锆石特征;锆石年龄分布于220Ma和103~123Ma 2个区间,代表了2期岩浆事件;对2种锆石分别命名为捕获岩浆锆石和新生岩浆锆石;锆石的地球化学和年龄信息显示捕获岩浆锆石的原岩为早三叠世花岗岩;锆石微量元素信息暗示花岗斑岩是早三叠世花岗岩高度熔融结晶分异、侵位于浅部氧化环境而形成,这一过程导致新生岩浆锆石负Eu异常程度降低。新生锆石加权平均年龄为(113.5±3.8)Ma,与成矿年龄一致,据此认为早白垩世的岩浆事件是金厂金矿成矿事件的直接原因,成矿背景为太平洋板块俯冲后的岩石圈伸展。  相似文献   

11.
古亚洲构造域内发育有大量的古生代酸性侵入岩。对阿尔泰造山带可可托海近3号脉的酸性侵入岩体进行LA-ICP-MS锆石U-Pb定年分析,以确定其岩浆作用时代及其岩浆活动的构造意义。研究区内的花岗岩包含的锆石大部分为自形-半自形晶,显示为典型的岩浆成因;测年结果发现,该岩体形成于404.4±3.2 Ma,为早泥盆世岩浆活动的产物。通过对额济纳辉森乌拉西糜棱岩化二长花岗岩中白云母40Ar/39Ar同位素年代学分析,获得白云母的坪年龄和等时线年龄分别为407.69±3.09 Ma和407.65±3.99 Ma,这暗示了拐子湖-呼和音乌苏弧形挤压带在早泥盆世活动的冷却年龄。以上事件与早泥盆世古亚洲洋的俯冲、碰撞的构造环境关系密切。  相似文献   

12.
The structure, magmatism and sedimentation within the South China Block (SCB) related to the Indosinian Orogeny had attracted considerable attention since De-prat[1] and Fromagat[2] proposed the “Indosinian move-ment” based on two unconformities between Pre-Norian and Pre-Rhaetian during Triassic in Vietnam. However, Indosinian tectonic evolution of the SCB has been long debated[3―6]. Some researchers believed that the compli-cated structure-magmatism-sedimentation within the SCB w…  相似文献   

13.
Zircon U-Pb ages of the basement rocks beneath the Songliao Basin, NE China   总被引:12,自引:1,他引:11  
The basement of the Songliao Basin is mainly composed of slightly-metamorphosed or unmetamorphosed Paleozoic strata, granites and gneiss. Petrographical studies indicate that the gneiss was originally the granitic intrusions which were deformed in the later stage. One undeformed granitic rock sample gives a U-Pb age of (305±2) Ma, and the mylonitic granite yields a U-Pb age of (165±3) Ma. Both of the two samples contain no inherited zircon, which suggests that there is no large-scale Precambrian crystalline basement beneath the Songliao Basin.  相似文献   

14.
LEE Ben 《科学通报(英文版)》2009,54(13):2309-2324
The Wenquan molybdenum deposit is associated with a Triassic granite in this area. The Wenquan granite is enriched in LILE and LREE, poor in HFSE, and has significantly higher contents of alkali (K2O+Na2O) and Sr, Ba than those of the island arc volcanic rocks. These geochemical characteristics are similar to post-collisional granites in high K calc-alkaline series. Studies of major elements, trace elements, REEs and chronology of the Wenquan pluton show that, in the geodynamic transition stage of continent-continent convergence to extension, the partial melting of the enriched lithospheric mantle generated the basaltic magma and triggered the partial melting of the thickened lower crust which produceded the acidic magma, and the Wenquan pluton was formed by mixing of the two magmas. Molybdenite Re-Os isotopic dating gave Os model ages of 212.7±2.6 Ma to 215.1±2.6 Ma with a weighted mean of 214.1±1.1 Ma, and an Re-Os isochron age of 214.4±7.1 Ma. These ages are close to K-Ar ages (223 to 226 Ma) and a SHRIMP zircon U-Pb age (223±7 Ma) for the Wenquan granite within the error range, but relatively younger. This implies that the Mo mineralization occurred in a late stage of the magmatic intrusion, and the metallogenesis took place in the transition stage from syn-collision to post-collision in the tectonic setting of the Qinling Orogenic Belt (QOB) after continental collision between the North China Block (NCB) and the South China Block (SCB). This process is also corresponding to the geological events of metamorphism and deformation in South Qinling, closure of the Mian-Lue oceanic basin, and exhumation of the Dabie-Sulu ultrahigh-pressure metamorphic rocks. The large-scale continent-continent collision between NCB and SCB in the middle Triassic triggered significant crustal thickening and exhumation of subducted slab. In the late Triassic, the tectonic setting was transformed to the transition stage from collision to extension. Materials from the asthenospheric mantle would ascend into the root of the lower crust, which could induce partial melting of the lower crust and generate Mo-enriched granitic magma. The ore-forming elements enriched in the fluid derived from the condensation and fraction of the magma resulted in the Mo mineralization. The Mo deposits in the QOB are mainly formed in two episodes, namely 220± Ma and 140± Ma. The two episodes of metallogenesis were developed in the tectonic transition settings from compression to extension, but they were in the different stages of the tectonic evolution. The occurrence of the Wenquan Mo-bearing pluton indicates that the Triassic tectonic-magmatic belt of Western Qinling is another favorable region for Mo mineralization in the QOB. Therefore, it is significant to pay more attention to evaluation of the ore-forming potentiality in the Triassic granites in Western Qinling.  相似文献   

15.
The Miaoershan uranium(U)ore field in northeastern Guangxi is one of the important granite-related U deposits in south China and is closely related to the Douzhashan U-bearing granite.The Douzhashan granite contains primary U-rich accessory minerals,including monazite(UO2=0.98-1.75 wt%)and xenotime(UO2=1.48-6.14 wt%).Primary monazite and xenotime yield chemical ages of 231±28 Ma and 230±38 Ma by electron microprobe analysis and U-Pb isotopic ages of 220±6 Ma and 211±7 Ma by laser ablation-inductively coupled-mass spectrometry respectively.These ages demonstrate that the Douzhashan granite formed during the period of Indosinian magmatic activity.Back scattered electron imaging shows that monazite and xenotime are commonly altered to assemblages of low-U synchisite and apatite,which was associated with loss of U to hydrothermal fluids.U-Th-Pb analyses of secondary apatite yielded a chemical age of 136±17 Ma,which corresponds to the timing of Cretaceous-Tertiary crustal extension in south China.We suggest that the heat and CO2required for mineralization was the result of Yanshanian crustal extension,and that this triggered the breakdown of U-rich accessory minerals in the Douzhashan U-bearing granite.Uranium remobilization from the Douzhashan granite provided materials for mineralization within the granite and/or surrounding country rocks.Therefore,a combination of Indosinian compression and Yanshanian extensional overprint produced the hydrothermal U deposits associated with the Douzhashan granite.  相似文献   

16.
藏北羌塘南缘扎普?多不杂岩浆弧内的青草山花岗岩体由花岗斑岩和石英二长斑岩组成, 目前缺乏地球化学和年代学数据来约束其成因和形成时代。用 LA-ICP-MS 方法测得石英二长斑岩锆石 206Pb/238U 年龄加权平均值为122±1 Ma (MSWD=3.9), 花岗斑岩的锆石SHRIMP U-Pb 年龄为114.6±1.2 Ma (MSWD=1.1), 表明岩体形成于早白垩世。岩体含白云母、堇青石, 无角闪石, 具有富铝(A12O3 含量: 14.81%~15.86%)、贫钙(CaO 含量: 1.10%~2.44%)、总碱含量高(K2O+Na2O 含量: 6.86%~8.80%)的特征, 铝饱和指数 A/CNK 为1.06~1.20, 在 CIPW 标准矿物计算中出现刚玉分子(1.20%~2.86%), 未出现透辉石, 表明该岩体为一套强过铝质亚碱性 S 型花岗岩。(La/Yb)N=3.24~16.20, LREE/HREE=4.37~12.4, 在配分曲线上显示左高右低的特征, 富集Rb, Th, U, K, La, Ce 等大离子亲石元素, 亏损Ta, Nb, P, Ti, Y 等高场强元素, 具有较典型的岛弧岩浆岩地球化学特征。研究结果揭示, 青草山花岗岩为班公湖?怒江洋壳北向俯冲背景下, 上地壳杂砂岩质成分发生部分熔融作用的产物。  相似文献   

17.
The Huashanguan rapakivi pluton in Zhongxiang,Hubei Province,China,is the first discovered Proterozoic rapakivi pluton in the Yangtze block.Based on field and petrographical observations,a typical rapakivi texture was found in the northern portion of the Huashanguan granitic pluton.Almost all the K-feldspar phenocrysts were round to oval in shape and most had plagioclase coatings known as rapakivi phenocrysts.Alkali feldspars and quartz had two or more generations.Petrochemically,the Huashanguan rapakivi granites were characterized as having high values of Si,K,Fe,Th,U,La,Ga,Ce,Sm and LREE,low values of Ca,Mg,Sr,Nb,Y and HREE,and a negative Eu anomaly.These geochemical characteristics of the Huashanguan granites were concordant with typical rapakivi granites,and had an affinity to A-type granites.LA-ICP-MS U-Pb zircon dating also was conducted.The dating yielded a 207Pb/206Pb weighted mean age of 1851±18 Ma (MSWD =1.2),which represents the age of the pluton emplacement.The age of 803±170 Ma at the lower intercept in the concordia diagram corresponds to the age of a later deformation event which affected the pluton,and suggests that the Huashanguan pluton was influenced by Neoproterozoic thermo-tectonic events after its formation.The discovery of Paleoproterozoic Huashanguan rapakivi granites indicates continental rifting or a post-orogenic extensional event that took place in the Paleoproterozoic in the Yangtze block.These events may be related to the breakup of the Paleoproterozoic Columbia supercontinent.  相似文献   

18.
The thermal history of the late Mesozoic miarolitic granite has been studied based on zircon U-Pb dating, whole rock Rb-Sr dating and K-Ar dating of muscovite, biotite and K-feldspar from the same rock sample. From the beginning of zircon crystallization to the closure of K-Ar system of biotite, the granite body had a slow cooling rate (11.0℃/Ma) and an ascending rate (0.07 mm/a). From the end of this stage to the closure of K-Ar system of K-feldspar, the granite body increased its cooling rate (45℃/Ma) and ascending rate (0.36 mm/a). The thermal history of the Xincun granite with a slow cooling rate at the early stage and a fast cooling rate at the late stage may have been related to the fact that the Fujian coastal area had very high geothermal gradient in the late Mesozoic and evident decrease in geothermal gradient in the early Cenozoic.  相似文献   

19.
为了加深对华北北缘晚古生代构造背景以及古亚洲洋闭合时限的认识, 对华北北缘大青山地区小井沟花岗岩开展了年代学、地球化学和同位素研究。分别利用LA-MC-ICP-MS, ICP-AES和ICP-MS等方法进行锆石U-Pb测年, 主、微量和稀土元素分析以及锆石Hf同位素测试。结果表明, 小井沟岩体侵位于二叠纪, 侵位年龄为275±1 Ma (MSWD=0.93)。该花岗岩具有高硅(SiO2=70.72%~72.64%)、高钾(K2O=4.19%~4.23%)的特点, A/CNK均约为1.1, 属于弱过铝质的高钾钙碱性系列, 稀土元素总量(ΣREE)为87.67~101.51 μg/g, 配分曲线呈右倾型, 具有微弱的Eu负异常, 富集大离子亲石元素(LILE, 如Rb, Ba, K, Sr等), 亏损高场强元素(HFSEs, 如Nb, Ta, Y, Yb, Lu等), 应该是由下地壳部分熔融形成。该花岗岩的锆石具有负的εHf(t)值(-9.56~-5.00), 模式年龄(TDM2)在1.91~1.61 Ga之间, 表明华北陆块古元古代的地壳岩石应该是其主要物源, 可能有幔源物质的参与。结合整个华北北缘二叠纪花岗岩的岩浆演变特征, 小井沟岩体应形成于由俯冲向碰撞-后碰撞转变的过渡时期, 古亚洲洋可能在晚二叠世之前已闭合。  相似文献   

20.
为了加深对微山稀土矿碱性杂岩体岩浆活动期次及与成矿关系的理解,对微山稀土矿床碱性杂岩体进行岩相学、地球化学分析和锆石U-Pb年代学测定。结果表明,微山稀土矿碱性杂岩体正长岩类地球化学特征相似,具有同源性,为偏铝质碱性岩。稀土总量高,轻重稀土元素分馏明显,呈轻稀土高度富集模式。微量元素组成具有幔源岩浆岩的特征,富集Rb,Ba,Sr等大离子亲石元素,亏损Nb,Ta,Zr等高场强元素,Eu异常不显著。利用LA-ICP-MS U-Pb年代学方法,测得含矿石英正长岩、霓辉石英正长岩锆石U-Pb年龄分别为122.4±2.0 Ma(MSWD=5.2)和130.1±1.4 Ma(MSWD=9),存在2536±6.1 Ma(MSWD=1.6)的继承锆石,表明地壳物质参与成岩过程。结合鲁西燕山期构造演化过程,认为微山正长岩类形成于华北克拉通中生代构造体制转折后的伸展背景下,成矿作用与碱性杂岩体的演化有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号