首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 774 毫秒
1.
The large southern Zhuguangshan granitic batholith composite consists of granites with ages varying from the Caledonian through Indosinian to Yanshanian. Based on K-Ar dating data, the ages of the major parts of this composite were previously regarded as Yanshanian. In this study, the SHRIMP zircon U-Pb dating method has been adopted for six plutons, Ledong, Longhuashan, Dawozi, Zhaidi, Baiyun and Jiangnan, in the southern Zhuguangshan composite, in which the four plutons other than Baiyun and Jiangnan were previously regarded as Yanshanian granites. Magmatic zircons from these six plutons, dated by this study, have yielded ages of 239±5 Ma (MSWD = 2.5), 239±5 Ma (MSWD = 2.5), 239±2 Ma (MSWD = 1.7), 239±4 Ma (MSWD = 3.2), 231±2 Ma (MSWD = 0.81) and 231±3 Ma (MSWD = 1.8), respectively. The results indicate that these plutons were formed by early Indosinian magmatism. Geochemical characteristics suggest that these granites were formed in an extensional tectonic environment. Therefore, the Indosinian period granites in the southern Zhuguangshan composite were formed by partial melting of the Paleo-Mesoproterozoic crustal components during the collapse of thickened lithosphere after the collision between the South China and Indosinian plates.  相似文献   

2.
Mesozoic granitoids are widespread in the Qinling-Dabie-Sulu orogenic belt. Precise U-Pb dating on these granitoids can reveal the evolution of the continental collision orogen and thus provide information on the nature of magma sources. This study presents zircon LA-ICP-MS U-Pb dating and whole-rock geochemical analyses for two intrusions at Changba and Huangzhuguan in western Qinling. Zircon U-Pb ages for central and marginal phases of the Huangzhuguang intrusion are 214±1 Ma and 213±3 Ma, respectively. Zircons from the Changba intrusion yield a dominant cluster with an U-Pb age of 213±2 Ma. Collectively, these ages are younger than ages of 220 to 240 Ma for ultrahigh-pressure metamorphism due to the continental collision between the South China Block and the North China Block, corresponding to syn-exhumation magmatism. Some inherited zircons occur in the Changba intrusion, yielding a weighted mean of 206Pb/238U ages at 757±14 Ma. This indicates that the Changba intrusion has the crustal source of mid-Neoproterozoic ages and a tectonic affinity to the South China Block. Geochemically, the two intrusuons are both rich in LILE and LREE but depleted in HFSE and HREE, similar to arc-type igneous rocks. The Huangzhuguang intrusion exhibits linear correlations between SiO2 and the other major oxides, implying chemical evolution from a cognate magma source. It contains mafic enclaves, suggesting possible mixing of felsic-mafic magmas. The Changba granite is rich in Si and K but poor in Fe and Mg as well as has a high value of Fe*, suggesting strong differentiation of granitic magma. Therefore, the two intrusions were derived from the Late Triassic anatexis of the continental crust of different compositions in the northern margin of South China Block. This process may be coupled with exhumation of the subducted continental crust in the stage of late collision.  相似文献   

3.
The Miaoershan-Yuechengling complex pluton is the largest granitoid complex in the western Nanling metallogenic belt with a surface exposure of >3000 km2.The complex pluton is composed of an early stage granitoid batholith and late stage small intrusions.The early stage batholith contains mainly medium-grained porphyritic mica granite and porphyritic monzonite granite,whereas the late stage intrusions are composed of muscovite granite porphyry and muscovite monzonitic granite.There are many W-Sn-Mo-Pb-Zn-Cu ores in the contact zone between the batholith and strata,forming an ore-rich belt around the batholith.Based on zircon LA-ICP-MS U-Pb ages,the southwestern part of the early stage batholith formed at 228.7 ± 4.1 Ma(MSWD = 2.49),with slightly earlier magmatic activity at 243.0 ± 5.8 Ma(MSWD = 2.62).The Yuntoujie muscovite granite was associated with W-Mo mineralization and has a zircon LA-ICP-MS U-Pb age of 216.8 ± 4.9 Ma(MSWD = 1.44).The Re-Os isochron age of molybdenite from the Yuntoujie W-Mo ore was 216.8 ± 7.5 Ma(MSWD = 11.3).Our new isotope data suggest that the late stage intrusive stocks from the southwestern Miaoershan-Yuechengling batholith were closely associated with W-Mo mineralization from the Indosinian period.These new results together with previous isotope data,suggest that South China underwent not only the well-known Yanshanian mineralization event,but also a widespread Indosinian metallogenic event during the Mesozoic period.Therefore,South China has a greater potential for Indosinian mineralization than previously thought such that more attention should be given to the Indosinian ore prospecting in South China.  相似文献   

4.
In addition to the wide spread peraluminous granites, some alkaline or alkali-rich intrusive rocks were recently observed in the Wuyi Mountains. The Yangfang aegiriteaugite syenites in the Wuyi Mountains are strongly enriched in light rare earth elements (LREE), K, Ba, Ga, Zr and Y. What is more, differentiations of REE are obvious. In addition, the Yangfang aegiriteaugite syenites have also some characteristics similar to A-type granite. Zircons are selected from the Yangfang aegiriteaugite syenites for Sensitive High-Resolution Ion Microprobe (SHRIMP-Ⅱ) U-Pb geochronology study. 15 analyses give concordant 206Pb/238U ages in a narrow range of 233—249 Ma, which correspond to a single age population with a weighted mean 206Pb/238U age of 242 4 Ma, which records the crystallization time of the aegiriteaugite syenites. It is suggested that: (1) there were early Triassic peralkaline intrusive rocks in South China; (2) the early Indosinian extension event was probably active in local area, South China. This discovery provides a new insight for farther understanding of 揑ndosinian orogeny in South China.  相似文献   

5.
LEE Ben 《科学通报(英文版)》2009,54(13):2309-2324
The Wenquan molybdenum deposit is associated with a Triassic granite in this area. The Wenquan granite is enriched in LILE and LREE, poor in HFSE, and has significantly higher contents of alkali (K2O+Na2O) and Sr, Ba than those of the island arc volcanic rocks. These geochemical characteristics are similar to post-collisional granites in high K calc-alkaline series. Studies of major elements, trace elements, REEs and chronology of the Wenquan pluton show that, in the geodynamic transition stage of continent-continent convergence to extension, the partial melting of the enriched lithospheric mantle generated the basaltic magma and triggered the partial melting of the thickened lower crust which produceded the acidic magma, and the Wenquan pluton was formed by mixing of the two magmas. Molybdenite Re-Os isotopic dating gave Os model ages of 212.7±2.6 Ma to 215.1±2.6 Ma with a weighted mean of 214.1±1.1 Ma, and an Re-Os isochron age of 214.4±7.1 Ma. These ages are close to K-Ar ages (223 to 226 Ma) and a SHRIMP zircon U-Pb age (223±7 Ma) for the Wenquan granite within the error range, but relatively younger. This implies that the Mo mineralization occurred in a late stage of the magmatic intrusion, and the metallogenesis took place in the transition stage from syn-collision to post-collision in the tectonic setting of the Qinling Orogenic Belt (QOB) after continental collision between the North China Block (NCB) and the South China Block (SCB). This process is also corresponding to the geological events of metamorphism and deformation in South Qinling, closure of the Mian-Lue oceanic basin, and exhumation of the Dabie-Sulu ultrahigh-pressure metamorphic rocks. The large-scale continent-continent collision between NCB and SCB in the middle Triassic triggered significant crustal thickening and exhumation of subducted slab. In the late Triassic, the tectonic setting was transformed to the transition stage from collision to extension. Materials from the asthenospheric mantle would ascend into the root of the lower crust, which could induce partial melting of the lower crust and generate Mo-enriched granitic magma. The ore-forming elements enriched in the fluid derived from the condensation and fraction of the magma resulted in the Mo mineralization. The Mo deposits in the QOB are mainly formed in two episodes, namely 220± Ma and 140± Ma. The two episodes of metallogenesis were developed in the tectonic transition settings from compression to extension, but they were in the different stages of the tectonic evolution. The occurrence of the Wenquan Mo-bearing pluton indicates that the Triassic tectonic-magmatic belt of Western Qinling is another favorable region for Mo mineralization in the QOB. Therefore, it is significant to pay more attention to evaluation of the ore-forming potentiality in the Triassic granites in Western Qinling.  相似文献   

6.
The new paleomagnetic data of the early Triassic Daye Formation from Hubei Province are reported. The ChRM passes consistency test and reversal test. Two magnetic components were isolated with principal component analysis (PCA). Component B is a ChRM and component A was acquired by remagnetization during Indosinian cycle. Rock magnetic study shows that the carrier is dominantly detrital magnetite. According to the data, in conjunction with recently published Triassic paleomagnetic results, mean paleopole of the Triassic Yangtze Block is calculated as 30.3°N癗, 198.4°E, α95 = 9.2° Distribution of all Triassic declinations indicates obviously local rotation in the mid-Yangtze areas, which results in consistence of the declinations with fold axes. By comparison with Triassic paleomagnetic data in the South China Block and some of geological evidence, it is inferred that the timing of the suture between the Yangtze Block and the South China Block is earlier in western part than in eastern part in the Indosinian period.  相似文献   

7.
The architecture and growth history of Precambrian crustal basements in the Central Tianshan Block play a key role in understanding the tectonic evolution of the Chinese Tianshan Orogenic Belt.In this study,we present precise LA-ICP-MS zircon U–Pb dating and LAMC-ICPMS zircon Hf isotopic data for two granitic gneisses from Alatage area in the Central Tianshan Block.The magmatic zircons from both samples yield similar protolith ages of 945±6 and 942±6 Ma,indicating that the early Neoproterozoic magmatism is prevailed in the Alatage area.These zircons have crustal Hf model ages of1.82–2.22 and 1.70–2.03 Ga,respectively,which are significantly older than their crystallization ages.It indicates that their parental magmas were derived from the reworking of ancient crust.However,we suggest that these Paleoproterozoic Hf model ages might result from mixing of continental materials with different ages in the Neoproterozoic crust.The inherited(detrital)zircon cores not only yield a wide age range of ca.989–1617 Ma,but also exhibit large Hf-isotope variations with Hf model ages of1.54–2.30 Ga.In particular,some 1.4–1.6 Ga zircons show high initial176Hf/177Hf ratios,consistent with those of depleted mantle,which indicates that the Mesoproterozoic event involved both reworking of older crust and generation of juvenile crust.The Central Tianshan Block has different Precambrian crustal growth history from the Tarim Craton.Therefore,it would not be a fragment of the Precambrian basement of the Tarim Craton.  相似文献   

8.
A combined study of zircon LA-ICP-MS U-Pb dating, trace elements and Hf isotope was carried out for gneissic granite from the Sanzhishu area in Jingning, SW Zhejiang Province. Nearly all the zircons separated from the granite exhibited oscillatory zoning and high Th/U ratios (>0.1). The REE profile showed a pronounced positive Ce anomaly, negative Eu anomaly and an enrichment of HREE, which are typical characteristics of magmatic zircon. Thirteen concordant or nearly concordant analytical data yielded a weighted mean 207Pb/206Pb age of 1860±13 Ma (MSWD=0.084), representing the formation age of the granite. The magmatic zircons had negative εHf(t) values of −15.6 to −10.0 and two-stage Hf model ages of 3.1 to 3.4 Ga, indicating that the granites were formed by reworking of ancient crust. The major- and trace-element data indicate that the gneissic granites are metaluminous high-K calc-alkaline rocks and exhibit the same geochemical characteristics as aluminous A-type granites, implying the emplacement of the granite in a post-orogenic extensional tectonic setting. We conclude that the Paleoproterozoic crustal reworking event in the Cathaysia Block of South China marked the transition from assembly to break-up of the Columbia supercontinent. Supported by National Natural Science Foundation of China (Grant No. 40873004), Special Funds for National Scientific Research of Commonweal Industries, the Ministry of Land and Resources of China (Grant No. 2008110015), Opening Foundation of State Key Laboratory of Continental Dynamics, Northwest University (Grant No. 06LCD12) and the Project of Land and Resources Bureau of Zhejiang Province (Grant No. 2004005)  相似文献   

9.
Origin and tectonic evolution of the Qilian Precambrian basement on NW China were investigated using zircon U-Pb ages with collaborating stratigraphic and paleontological evidence. Zircon grains were separated from two schists, two granitic gneisses and one mylonized gneiss and dated with SHRIMP. Seventy percent of sixty-one detrital zircon ages from two schists ranges from 0.88 Ga to 3.09 Ga, mostly within 1.0 Ga to 1.8 Ga with a peak at 1.6 Ga to 1.8 Ga, and twenty percent varies from 2.0 Ga to 2.5 Ga. A few falls in the Archean and Neoproterozoic periods. The two granitic gneisses were dated 930±8 Ma and 918±14 Ma, whereas the mylonized granitic gneiss was dated 790±12 Ma. These ages represent two periods of magmatisms, which can be correlated with the early and late stages of magmatisms associated with the Jinningian movement on the Yangtze Blocks. The results from this and previous studies indicate that the ages of the Precambrian detrital zircons from the Qilian Block are widely distributed in the Proterozoic era, distinct from the North China Block which was stable in the Neo-Mesoproterozoic era. By contrast, the age histograms of the detrital zircons from the Qilian Block is similar to those from Precambrian basement of the Yangtze Craton. Therefore, it is suggested that the Qilian Block had a strong affinity toward the Yangtze Craton and might belong to the supercontinent Gondwana in the Neoproterozoic time. This inference is supported by Nd model age (TDM), stratigraphic, and paleontological evidence. It is further considered that the Qilian Block was rifted from the supercontinent Gondwana during late Sinian to form an isolated continent in the Proto-Tethyan Ocean, moving towards the Alaxa Block in the North China Craton. The part of Proto-Tethyan Ocean between the Qilian and Alaxa Blocks should correspond to the so-called Paleo-Qilian Ocean. Following the closure of the Paleo-Qilian Ocean in the early Paleozoic, the Qilian Block collided with the Alaxa Block to form the North Qilian Orogenic Belt. Based on this tectonic explanation, the North Qilian ophiolites should represent parts of lithosphere from the Proto-Tethyan Ocean. Lithological and geochronological evidence also indicates that the Qilian Block underwent continental reactivation possibly induced by the deep northward subduction of the North Qaidam Block in early Paleozoic time.  相似文献   

10.
A felsic tuffaceous rock, obtained from a metamorphosed sequence of volcanics and sediments of the Hutuo Group, 8 km south of Taihuai in Wutaishan, contains two zircon populations. These record SHRIMP 207Pb/206Pb weighted mean ages of 2180±5 Ma and 2087±9 Ma, respectively. The older date is within error of the age of the Dawaliang Granite in Wutaishan and is considered to be  相似文献   

11.
In the Neoproterozoic, a large-scale magmatic activ- ity took place in the northern margin of the South China Block, with ages in a range of 700―800 Ma[1―4]). A systematic zircon U-Pb dating for bimodal metaigneous rocks in the Dabie-Sulu orogen yields ages of 758 ± 15 Ma[5], typifying rift magmatism along the northern margin of the South China Block during the middle Neoproterozoic. In addition, there is a widespread oc- currence of volcanic tuff interlayers around 635 Ma with the se…  相似文献   

12.
Granite at Penggongmiao is a large batholith in the Nanling Range, with an outcrop area of over 900 km 2 . There are many scheelite-quartz veins around the granite. LA-ICP-MS U-Pb dating was carried out for zircons from the granite. The middlecoarse-grained biotite granite has U-Pb ages of 435 to 436 Ma. Ages of 426.5±2.5 Ma were obtained for aplitic dyke cross-cutting the granite. The scheelite of magmatic origin in the aplite dyke was identified from petrographic investigation. This demonstrates that W-bearing granites of Early Paleozoic (corresponding to the Caledonian orogensis in the traditional sense) occur in the Nanling Range. This finding has important implications for the ore-forming potential of Paleozoic granites and on the extent of Mesozoic mineralization. Thus it merits performing an intensive study of Paleozoic granites in South China. The occurrences of aplite or microgranite may be an indicative of the Caledonian tungsten granites and associated W mineralization.  相似文献   

13.
A gneissic granite with an U-Pb age of 313±4 Ma was found in northeastern Fujian Province,South China.It is an S-type granite characterized by high K2O,Al2O3 and low SiO2,Na2O contents with high A/CNK ratio of 1.22 for the whole rock.Zircons with stubby morphology from the gneissic granite yield 206 Pb/238 U ages ranging from 326 to 301 Ma with a weighted average age of 313±4 Ma,and negative εHf(t) values from -8.35 to -1.74 with Hf model ages (TCDM) of 1.43 to 1.84 Ga.This S-type granite probably originated from late Paleoproterozoic crust in intracontinental orogeny.Integrated with previous results on paleogeographic reconstruction of South China,the nature of Paleozoic basins,Early Permian volcanism and U-Pb-Hf isotope of detrital zircons from the late Paleozoic to early Mesozoic sedimentary rocks,we suggest the occurrence of a late Paleozoic orogeny in the eastern Cathaysia Block,South China.This orogenic cycle includes Late Carboniferous (340-310 Ma) orogeny (compression) episode and Early Permian (287-270 Ma) post-orogenic or intraplate extension episode.Therefore,the late Paleozoic magmatism in the southeastern South China probably occurred during the intraplate orogeny rather than the arc-related process.  相似文献   

14.
A combined study of zircon U-Pb dating, Hf isotopes and trace elements has been carried out for granodioritic neosomes of migmatites from the Tianjingping area in northwestern Fujian Province. Zircons are characterized by zoning, higher Th/U ratios (mostly≥0.1), HREE enrichment, and positive Ce and negative Eu anomalies, and show features similar to magmatic or anatectic zircons. Apparent ^206Pb/^238U ages for the zircons are 447±2 Ma (95 % conf., MSWD=0.88), corresponding to a Caledonian event. εHf(t) values are -13.3 to -9.7, indicating a crustal source. Two-stage Hf model ages are 1.7 to 1.9 Ga, suggesting that protolith of the migmates was probably formed in the Paleoproterozoic. The granodioritic neosomes have the characteristics of peraluminous calc-alkaline granite, and their REE patterns and trace elements spidergrams show features of middle to upper crustal rocks. Together with previous studies, we conclude that the protolith of the Cathaysia basement in the Tianjingping area was likely formed in the middle-late Paleoproterozoic and experienced partial melting during the Caledonian period. The recognition of Caledonian reworking of the Paleoproterozoic basement in the Cathaysia Block provides a new insight into the tectonic evolution of the Cathaysia Block in the Caledonian period and the interaction between the Cathaysia Block and the Yangtze Block.  相似文献   

15.
In situ U-Pb dating of xenotime by laser ablation (LA)-ICP-MS   总被引:1,自引:0,他引:1  
Xenotime is an ideal mineral for U-Th-Pb isotopic dating because of its relatively high U and Th contents, but typically low concentration of common Pb. These characteristics, and the fact that it is widespread throughout various types of rocks, suggest that the U-Th-Pb dating of xenotime has broad applications. Studies of U-Pb dating on xenotime by ion microprobe (such as SHRIMP) have increased in recent years, whereas studies by laser ablation (LA)-ICP-MS are still rare. In this study, we developed a technique for U-Pb dating of xenotime using the 193 nm ArF laser-ablation system and Agilent 7500a Q-ICP-MS. To evaluate the reliability of our method, a xenotime standard, BS-1, was analyzed and calibrated against another xenotime standard, MG-1. The weighted mean 206 Pb/ 238 U ages of 510.1 ± 5.2 Ma (2 n = 21), 509.8 ± 4.3 Ma (2 n = 21) and 510.0 ± 4.6 Ma (2 n = 21) were obtained using beam diameters of 16, 24 and 32 m, respectively. These ages are identical to those determined by ID-TIMS method (weighted mean 206 Pb/ 238 U age of 508.8 ± 1.4 Ma), which supports the reliability of our LA-ICP-MS method. We also analyzed xenotimes in leucogranites from South Tibet and granites from Xihuashan in southern China, and obtained accurate and precise ages. Nevertheless, we observed systematic differences in Pb/U fractionation among xenotime, monazite and zircon. The matrix-effect resulted in either under-correction or over-correction of fractionation, and thus led to inaccurate ages. Thus, a matrix-matched material is required for U-Pb dating of xenotime by LA-ICP-MS.  相似文献   

16.
西秦岭中生代花岗岩锆石U-Pb-Lu-Hf同位素特征及地质意义   总被引:1,自引:0,他引:1  
对西秦岭地区中川岩体、柏家庄岩体和教场坝花岗岩体进行LA-ICP-MS锆石U-Pb同位素年代学分析, 获得其岩浆侵位年龄分别为220±1, 216±6和222±3 Ma, 表明3个岩体均形成于中?晚三叠世。样品的全岩地球化学分析结果表明, 3个岩体具有相似的稀土及微量元素特征, 均表现为显著亏损高场强元素Nb, Ti和P等, 具有明显的右倾式球粒陨石标准化稀土元素配分模式。锆石Lu-Hf同位素分析结果表明, 3个岩体锆石测年样品的εHf(t)值介于?3.31~+1.68之间, 二阶段模式年龄介于1151~1456 Ma之间。岩石成因分析表明, 这些印支期花岗岩体的母岩浆主要来源于新元古代地壳物质的部分熔融。结合岩体形成时代、岩石成因和区域岩浆作用, 认为这些岩体形成于南秦岭与华南板块沿勉略缝合带相碰撞的造山动力学背景, 可能与华南板块的俯冲板片断离有关。  相似文献   

17.
Single-grain zircon U-Pb dating was carried out to constrain the emplacement timing of granitic plutons at Chaxinzi, Xiaoweishahe and Longtou in the Tonghua area, south of Jilin Province. The results show that these plutons formed in the Triassic with ages of 203—217 Ma. Geological and geochemical characteristics indicate that the plutons are composed of quartz diorite and granite. The former was derived from partial melting of mafic lower crust, whereas the latter originated from thickened crust with garnet as the residue in the source. It appears that protoliths of these two types of granitits are different although they have the same emplacement age. Considering that these plutons are petrologically different from the coeval granites in the Xingmeng (Xing‘an-Mongolian) to Jihei (Jilin-Heilongjiang) orogenic belt in the north, it is suggested that their formation was related to the Dabie-Sulu ultrahigh-pressure collisional orogenesis since their ages are only 10—20 Ma younger than timing of the ultrahigh-pressure metamorphism, but comparable to that of the first rapid exhumation of the ultra-high-pressure metamorphic rocks and the emplacement of the post-collisional granites.  相似文献   

18.
Geological records of Neoproterozoic magmaticevents have recently been identified in the central Phanerozoic orogenic belts of China[1]. In regions of east Qinling orogen[2], Dabie-Sulu orogen[3], north Qaidam Basin orogen[4―6], and southwest Tarim Basin…  相似文献   

19.
Zircom U-Pb age and Hf isotope analyses were made on gneissic granite and garnet-mica two-feldspar gneiss from the Helanshan Group in the Bayan Ul-Helan Mountains area, the western block of the North China Craton (NCC). Zircons from the gneissic granite commonly show core-mantle-rim structures, with magmatic core, metamorphic mantle and rim having ages of 2323±20 Ma, 1923±28 Ma and 1856±12 Ma, respectively. The core, mantle and rim show similar Hf isotope compositions, with single-stage depleted mantle model ages (TDM1) of 2455 to 2655 Ma (19 analyses). Most of the detrital zircons from the garnet-mica two-feldspar paragneiss have a concentrated U-Pb age distribution, with a weighted mean 207Pb/206Pb age of 1978±17 Ma. A few detrital zircons are older (2871 to 2469 Ma). The age for metamorphic overgrown rim was not determined because of strong Pb loss due to their high U content. The zircons show large variation in Hf isotope composition, with TDM1 ages of 1999 to 3047 Ma. In com- bination with previous studies, the main conclusions are as follows: (1) protolith of the khondalite se- ries in the Helanshan Group formed during Palaeoproterozoic rather than the Archaean as previously considered; (2) The results lend support to the contention that there is a huge Palaeoproterozoic Khondalite (metasedimentary) Belt between the Yinshan Mountains Block and the Ordos Block in the Western Block of NCC; (3) The widely-distributed bodies of early Palaeoproterozoic orthogneisses in the Khondalite Belt might be one of the important sources for detritus material in the khondalite series; (4) Collision between the Yinshan Block, the Ordos Block and the Eastern Block occurred in the same tectonothermal event of late Palaeoproterozoic, resulting in the final assembly of the NCC.  相似文献   

20.
Geochronological and isotope studies have been carried out for two important plutons in the Central Western Kunlun Belt. U-Pb single grain zircon dating results show that the North Kudi Pluton (404 Ma) was produced near the end of Caledonian; whereas the previously labeled Hercynian Arkarz Mountain Pluton (215 Ma) is either an Indosinian pluton or a product of multiple-phase magmatism. Sm/Nd isotopic data suggest that their sources are quite heterogeneous, and continental crust played an important role during the generation of these two granitic plutons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号