首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
提高降雨型滑坡危险性预警精度和空间辨识度具有重要意义.以江西宁都县1980—2001年156个降雨型滑坡为例,首先基于传统的EE-D(early effective rainfall-rainfall duration)阈值法计算不同降雨诱发滑坡的时间概率级别;然后以各级别临界降雨阈值曲线对应的时间概率为因变量,并以对应的前期有效降雨量(early effective rainfall,EE)和降雨历时(D)为自变量,采用逻辑回归拟合出上述因变量与自变量之间的非线性关系,得到降雨诱发滑坡的连续概率值;之后对比C5.0决策树和多层感知器的滑坡易发性预测性能;最后利用降雨诱发滑坡的连续概率值与易发性图相耦合以实现连续概率滑坡危险性预警.结果显示:(1)宁都降雨型滑坡连续概率值的逻辑回归方程为1/P=1+e4.062+0.747 4×D-0.079 44×EE,其拟合优度为0.983;(2)2002—2003年的20处用于连续概率阈值测试的降雨型滑坡大都落在连续概率值大于0.7的区域,只有4处落在小于0.7的区域;(3)C5.0决策树预测滑坡易发性的精度显著高于多层感知器;(4)近5年的4次降雨型滑坡的连续概率危险性值都在0.8以上,且高和极高预警区的面积较传统滑坡危险性分区更小.可见连续概率滑坡危险性预警法相较于传统危险性分区法具有更高的预警精度和空间辨识度,且通过叠加滑坡易发性图及其临界降雨阈值可开展实时滑坡危险性预警制图.   相似文献   

2.
The main objective of this study is to assess regional landslide hazards in the Hoa Binh province of Vietnam. A landslide inventory map was constructed from various sources with data mainly for a period of 21 years from 1990 to 2010. The historic inventory of these failures shows that rainfall is the main triggering factor in this region. The probability of the occurrence of episodes of rainfall and the rainfall threshold were deduced from records of rainfall for the aforementioned period. The rainfall threshold model was generated based on daily and cumulative values of antecedent rainfall of the landslide events. The result shows that 15-day antecedent rainfall gives the best fit for the existing landslides in the inventory. The rainfall threshold model was validated using the rainfall and landslide events that occurred in 2010 that were not considered in building the threshold model. The result was used for estimating temporal probability of a landslide to occur using a Poisson probability model. Prior to this work, five landslide susceptibility maps were constructed for the study area using support vector machines, logistic regression, evidential belief functions, Bayesian-regularized neural networks, and neuro-fuzzy models. These susceptibility maps provide information on the spatial prediction probability of landslide occurrence in the area. Finally, landslide hazard maps were generated by integrating the spatial and the temporal probability of landslide. A total of 15 specific landslide hazard maps were generated considering three time periods of 1, 3, and 5 years.  相似文献   

3.
Landslide susceptibility mapping is essential for land-use activities and management decision making in hilly or mountainous regions. The existing approaches to landslide susceptibility zoning and mapping require many different types of data. In this study, we propose a fractal method to map landslide susceptibility using historical landslide inventories only. The spatial distribution of landslides is generally not uniform, but instead clustered at many different scales. In the method, we measure the degree of spatial clustering of existing landslides in a region using a box-counting method and apply the derived fractal clustering relation to produce a landslide susceptibility map by means of GIS-supported spatial analysis. The method is illustrated by two examples at different regional scales using the landslides inventory data from Zhejiang Province, China, where the landslides are mainly triggered by rainfall. In the illustrative examples, the landslides from the inventory are divided into two time periods: The landslides in the first period are used to produce a landslide susceptibility map, and those in the late period are taken as validation samples for examining the predictive capability of the landslide susceptibility maps. These examples demonstrate that the landslide susceptibility map created by the proposed technique is reliable.  相似文献   

4.
Assessing landslide exposure in areas with limited landslide information   总被引:4,自引:2,他引:2  
Landslide risk assessment is often a difficult task due to the lack of temporal data on landslides and triggering events (frequency), run-out distance, landslide magnitude and vulnerability. The probability of occurrence of landslides is often very difficult to predict, as well as the expected magnitude of events, due to the limited data availability on past landslide activity. In this paper, a qualitative procedure for assessing the exposure of elements at risk is presented for an area of the Apulia region (Italy) where no temporal information on landslide occurrence is available. Given these limitations in data availability, it was not possible to produce a reliable landslide hazard map and, consequently, a risk map. The qualitative analysis was carried out using the spatial multi-criteria evaluation method in a global information system. A landslide susceptibility composite index map and four asset index maps (physical, social, economic and environmental) were generated separately through a hierarchical procedure of standardising and weighting. The four asset index maps were combined in order to obtain a qualitative weighted assets map, which, combined with the landslide susceptibility composite index map, has provided the final qualitative landslide exposure map. The resulting map represents the spatial distribution of the exposure level in the study area; this information could be used in a preliminary stage of regional planning. In order to demonstrate how such an exposure map could be used in a basic risk assessment, a quantification of the economic losses at municipal level was carried out, and the temporal probability of landslides was estimated, on the basis of the expert knowledge. Although the proposed methodology for the exposure assessment did not consider the landslide run-out and vulnerability quantification, the results obtained allow to rank the municipalities in terms of increasing exposure and risk level and, consequently, to identify the priorities for designing appropriate landslide risk mitigation plans.  相似文献   

5.
Particularly in the last decade, landslide susceptibility and hazard maps have been used for urban planning and site selection of infrastructures. Most of the procedures for preparing of landslide susceptibility maps need high-quality landslide inventory map. Although the rainfall and seismic activities are accepted as triggering factor for landslides, designation of the triggering factor for each landslide in the inventory is almost impossible when well-documented records are unavailable. Therefore, during preparation of landslide susceptibility map, whole landslide records in the inventory map are used together without classifying based on the triggering factors. Although seismic activity is accepted as a triggering factor, possible effect of the use of seismic activity on production of landslide susceptibility map was investigated in this study, and the subject is open to discussion. For this purpose, a series of stability analyses based on circular failure and infinite slope model were performed considering different pseudostatic conditions. The results of analyses show that gentle slopes have higher susceptibility to failure than steeper ones, even if their stability conditions (susceptibilities) are similar for static condition. The seismic forces acting on failure surfaces may not be sufficiently taken into consideration in the conventionally prepared landslide susceptibility maps. Employing the general decreasing trend in stability condition based on slope face angle and the seismic acceleration, a new procedure was introduced for preparing of the landslide susceptibility map for a scenario earthquake. The prediction performance of occurring landslides increased after the procedure was applied to the conventionally prepared landslide susceptibility map. According to the threshold independent spatial performance analyses of the proposed methodology and the produced landslide susceptibility maps, the area under ROC curve values were calculated as 0.801, 0.933, and 0.947 for the maps prepared by considering conventional method and scenario earthquakes having M w values of 5.5 and 7.5, respectively.  相似文献   

6.
台风暴雨是我国东南丘陵山地滑坡的主要诱发因素,揭示台风路径与滑坡发生的相关关系对东南丘陵山地台风暴雨型土质滑坡监测预警具有重要的理论及实际意义。本文基于2015—2019年直接过境福建省或间接对福建省造成影响的台风数据以及与这些台风事件发生期间的降雨量数据和台风暴雨滑坡数据,运用ArcGIS软件中的克里金插值法将台风路径、降雨量数据及台风暴雨滑坡数据进行耦合。再运用Logistic回归方法,通过SPSS软件得到泉州市基于台风路径追踪的滑坡发生概率模型。并运用克里金插值法和Logistic回归方法,以台风杜鹃期间的滑坡为实例对所得模型进行验证,其对实际雨量站测得降雨数据引发滑坡与否的判对概率为77%,对实际发生滑坡的判对概率为100%,依据实际降雨量计算数据,其误报率为21%,但实际滑坡发生的误报率为0,符合安全性。预报效果较为满意,因此模型可作为在台风经过泉州市时的台风暴雨型滑坡发生概率的预测。  相似文献   

7.
Critical rainfall thresholds for landslides are powerful tools for preventing landslide hazard. The thresholds are commonly estimated empirically starting from rainfall events that triggered landslides in the past. The creation of the appropriate rainfall–landslide database is one of the main efforts in this approach. In fact, an accurate agreement between the landslide and rainfall information, in terms of location and timing, is essential in order to correctly estimate the rainfall–landslide relationships. A further issue is taking into account the average moisture conditions prior the triggering event, which reasonably may be crucial in determining the sufficient amount of precipitation. In this context, the aim of this paper is exploiting historical landslide and rainfall data in a spatial database for the derivation of critical rainfall thresholds for landslide occurrence in Sicily, southern Italy. The hourly rainfall events that caused landslides occurred in the twentieth century were specifically identified and reconstructed. A procedure was proposed to automatically convert rain guages charts recorded on paper tape into digital format and then to provide the cumulative rainfall hyetograph in digital format. This procedure is based on a segmentation followed by signal recognition techniques which allow to digitalize and to recognize the hyetograph automatically. The role of rainfall prior to the landslide events was taken into account by including in the analysis the rainfall occurred 5, 15 and 30 days before each landslide. Finally, cumulated rainfall duration thresholds for different exceedance probability levels were determined. The obtained thresholds resulted in agreement with the regional curves proposed by other authors for the same area; antecedent rainfall turned out to be particularly important in triggering landslides.  相似文献   

8.
Subsequent rainfall after a strong earthquake can easily trigger landslides. Aerial photography is always available after a strong earthquake but not always available in a timely manner after a subsequent rainfall following the earthquake. Sometimes, only panchromatic imagery is available because of its relatively low cost and large cover capacity. To detect multi-temporal landslides induced by earthquake and its post long-term effect, in company of other factors such as subsequent rainfall, traditionally, it needs to carry out image classification multi-times to calculate the variance information. Therefore, the accuracy will be affected by accumulated errors from multi-classification, and the process is very time-consuming. In this paper, a new semi-automatic approach combing aerial photograph with satellite imagery was proposed for rapid mapping of multi-temporal landslides. The approach can enhance the change information of each landslide event in one detection process. In addition, slope units were introduced to separate the detected conjoint landslides. Chenjiaba area, which located in the highest seismic intensity zone of Wenchuan earthquake in Beichuan, China, and had a strong rainfall 4 months later, was selected as a case study to demonstrate the usefulness of this methodology. Accuracy assessment was carried out by comparing those extracted ones with a manually prepared landslide inventory map. Correctly detected were 90.1 and 94.2 % for earthquake-induced landslides and new landslides, respectively. Results show that this approach is capable of mapping different temporal landslides efficiently and quickly.  相似文献   

9.
Gerardo Herrera  Rosa María Mateos  Juan Carlos García-Davalillo  Gilles Grandjean  Eleftheria Poyiadji  Raluca Maftei  Tatiana-Constantina Filipciuc  Mateja Jemec Auflič  Jernej Jež  Laszlo Podolszki  Alessandro Trigila  Carla Iadanza  Hugo Raetzo  Arben Kociu  Maria Przyłucka  Marcin Kułak  Michael Sheehy  Xavier M. Pellicer  Charise McKeown  Graham Ryan  Veronika Kopačková  Michaela Frei  Dirk Kuhn  Reginald L. Hermanns  Niki Koulermou  Colby A. Smith  Mats Engdahl  Pere Buxó  Marta Gonzalez  Claire Dashwood  Helen Reeves  Francesca Cigna  Pavel Liščák  Peter Pauditš  Vidas Mikulėnas  Vedad Demir  Margus Raha  Lídia Quental  Cvjetko Sandić  Balazs Fusi  Odd Are Jensen 《Landslides》2018,15(2):359-379
Landslides are one of the most widespread geohazards in Europe, producing significant social and economic impacts. Rapid population growth in urban areas throughout many countries in Europe and extreme climatic scenarios can considerably increase landslide risk in the near future. Variability exists between European countries in both the statutory treatment of landslide risk and the use of official assessment guidelines. This suggests that a European Landslides Directive that provides a common legal framework for dealing with landslides is necessary. With this long-term goal in mind, this work analyzes the landslide databases from the Geological Surveys of Europe focusing on their interoperability and completeness. The same landslide classification could be used for the 849,543 landslide records from the Geological Surveys, from which 36% are slides, 10% are falls, 20% are flows, 11% are complex slides, and 24% either remain unclassified or correspond to another typology. Most of them are mapped with the same symbol at a scale of 1:25,000 or greater, providing the necessary information to elaborate European-scale susceptibility maps for each landslide type. A landslide density map was produced for the available records from the Geological Surveys (LANDEN map) showing, for the first time, 210,544 km2 landslide-prone areas and 23,681 administrative areas where the Geological Surveys from Europe have recorded landslides. The comparison of this map with the European landslide susceptibility map (ELSUS 1000 v1) is successful for most of the territory (69.7%) showing certain variability between countries. This comparison also permitted the identification of 0.98 Mkm2 (28.9%) of landslide-susceptible areas without records from the Geological Surveys, which have been used to evaluate the landslide database completeness. The estimated completeness of the landslide databases (LDBs) from the Geological Surveys is 17%, varying between 1 and 55%. This variability is due to the different landslide strategies adopted by each country. In some of them, landslide mapping is systematic; others only record damaging landslides, whereas in others, landslide maps are only available for certain regions or local areas. Moreover, in most of the countries, LDBs from the Geological Surveys co-exist with others owned by a variety of public institutions producing LDBs at variable scales and formats. Hence, a greater coordination effort should be made by all the institutions working in landslide mapping to increase data integration and harmonization.  相似文献   

10.
以湖南省张家界市桑植县为研究区,在全面分析近30年降雨及滑坡数据的基础上,对滑坡及滑坡数量与降雨因子的关系开展了统计分析研究。首先确定了区域最佳有效降雨衰减系数,同时分别按滑坡规模、坡度、厚度大小统计了降雨与历史滑坡信息,得出有效降雨强度(I)与持续时间(D)散点图,由此确定各不同概率下诱发滑坡的区域有效降雨强度阈值,并进行了滑坡灾害危险性等级划分。进而,利用部分样本数据进行逻辑回归分析,得到了该研究区的滑坡发生概率预测方程,并给出了降雨强度临界值定量表达式,最后选用实际降雨诱发滑坡事件与未诱发滑坡事件进行对比验证。结果表明,文章所建立的滑坡预测模型准确性较高,预测情况与实际情况比较吻合。  相似文献   

11.
A method for producing digital probabilistic seismic landslide hazard maps   总被引:41,自引:0,他引:41  
The 1994 Northridge, California, earthquake is the first earthquake for which we have all of the data sets needed to conduct a rigorous regional analysis of seismic slope instability. These data sets include: (1) a comprehensive inventory of triggered landslides, (2) about 200 strong-motion records of the mainshock, (3) 1:24 000-scale geologic mapping of the region, (4) extensive data on engineering properties of geologic units, and (5) high-resolution digital elevation models of the topography. All of these data sets have been digitized and rasterized at 10 m grid spacing using ARC/INFO GIS software on a UNIX computer. Combining these data sets in a dynamic model based on Newmark's permanent-deformation (sliding-block) analysis yields estimates of coseismic landslide displacement in each grid cell from the Northridge earthquake. The modeled displacements are then compared with the digital inventory of landslides triggered by the Northridge earthquake to construct a probability curve relating predicted displacement to probability of failure. This probability function can be applied to predict and map the spatial variability in failure probability in any ground-shaking conditions of interest. We anticipate that this mapping procedure will be used to construct seismic landslide hazard maps that will assist in emergency preparedness planning and in making rational decisions regarding development and construction in areas susceptible to seismic slope failure.  相似文献   

12.
建立高效合理的区域滑坡灾害降雨预警模型对滑坡防治具有重要意义.然而以往的研究多侧重于临滑预警,对蠕变型滑坡在强降雨工况下的短暂加速变形的预警研究还有待深入.以三峡库区云阳县域内滑坡为例,首先根据滑坡地表位移监测数据的特点对统计样本进行合理筛选.再通过降雨因子与滑坡发生的相关性分析以及对滑坡在降雨条件下位移变化情况的数值模拟,确定了适用于不同时间阶段的降雨统计变量.然后将考虑了滑坡规模特征的滑坡位移比(累计位移与滑坡纵长之比)作为变形指标,分时段统计滑坡地表位移监测数据与历史降雨信息,建立了日降雨数据与月位移数据的对应关系,得到了可用于确定降雨量阈值的位移比模型,并获得了云阳县蠕变型滑坡的五级预警分区.最后分别选用研究区滑坡险情实例、长年位移监测数据及极端降雨事件对模型预警效果进行检验.结果显示基于专业监测数据的位移比模型的滑坡降雨预警结果与实际情况相符,可为蠕变型滑坡的预警预报提供依据.   相似文献   

13.
Landslide susceptibility zonation mapping assists researchers greatly to understand the spatial distribution of slope failure probability in a region. Being extremely useful in reducing landslide hazards, such maps could simply be produced using both qualitative and quantitative methods. In the present study, a multivariate statistical method called ‘logistic regression’ was used to assess landslide susceptibility in Hashtchin region, situated in west of Alborz Mountainsnorthwest of Iran. In this study, two independent variables, categorical (predictor) and continuous, were drawn on together in the model. To identify the region’s landslides use was made of aerial photographs, field studies and topographic maps. To prepare the database of factors affecting the region’s landslides and to determine landslide zones, geographic information system (GIS) was used. Using such information, landslide susceptibility modeling was accomplished. The data related to factors causing landslides were extracted as independent variables in each cell (in 50 m×50 m cells). Then, the whole data were input into the SPSS, Version 18. The prepared database was later analyzed using logistic regression, the forward stepwise method and based on maximum likelihood estimation. Regression equation was determined using obtained constants and coefficients and the landslide susceptibility of the area in grid-cells (pixels) was computed between 0 and 0.9954. The Receiver Operating Characteristic (ROC) curve was used to assess the accuracy of the logistic regression model. The predicting ability of the model was 84.1% given the area under ROC curve. Finally, the degree of success of landslide susceptibility zonation mapping was estimated to be 79%.  相似文献   

14.
We developed a real-time forecasting system, aiNet-GISPSRIL, for evaluating the spatiotemporal probability of occurrence of rainfall-triggered landslides. In this system, the aiNet (a kind of artificial neutral network based on a self-organizing system) and GIS are merged for integrating the rainfall conditions into various environmental factors that influence the landslide occurrence and for simulating the complex non-linear relationships between landslide occurrence and its related conditions. Zhejiang Province (101,800 km2 in area), located in the southeast coastal region of China, is highly prone to the occurrence of landslides during intensive rainfall. Since 2003, the aiNet-GISPSRIL has been used to predict landslides during the rainy seasons in the region. The aiNet-GISPSRIL uses the regional 24-h forecast rainfall information and the real-time rainfall monitoring data from the rain-gauge network as its inputs, and then provides 24-h forecast of the landslide probability for every 1 × 1-km grid cell within the region. Verification studies on the performance of the aiNet-GISPSRIL show that the system has successfully predicted the dates and localities of 304 landslides (accounting for 66.2% of reported landslides during the period). During the period from 2003 to 2007, because the system provided the probability levels of landslide occurrences up to 24-h in advance, gave locations of potential landslides, and timely warned those individuals at high-risk areas, more than 1700 persons living in the risk sites had been evacuated to safe ground before the landslides occurred and thus casualty was avoided. This highly computerized, easy-operating system can be used as a prototype for developing forecasting systems in other regions that are prone to rainfall-triggered landslides.  相似文献   

15.
Landslide zonation studies emphasize on preparation of landslide hazard zonation maps considering major instability factors contributing to occurrence of landslides. This paper deals with geographic information system-based landslide hazard zonation in mid Himalayas of Himachal Pradesh from Mandi to Kullu by considering nine relevant instability factors to develop the hazard zonation map. Analytical hierarchy process was applied to assign relative weightages over all ranges of instability factors of the slopes in study area. To generate landslide hazard zonation map, layers in geographic information system were created corresponding to each instability factor. An inventory of existing major landslides in the study area was prepared and combined with the landslide hazard zonation map for validation purpose. The validation of the model was made using area under curve technique and reveals good agreement between the produced hazard map and previous landslide inventory with prediction accuracy of 79.08%. The landslide hazard zonation map was classified by natural break classifier into very low hazard, low hazard, moderate hazard, high hazard and very high landslide hazard classes in geographic information system depending upon the frequency of occurrence of landslides in each class. The resultant hazard zonation map shows that 14.30% of the area lies in very high hazard zone followed by 15.97% in high hazard zone. The proposed model provides the best-fit classification using hierarchical approach for the causative factors of landslides having complex structure. The developed hazard zonation map is useful for landslide preparedness, land-use planning, and social-economic and sustainable development of the region.  相似文献   

16.
Landslide susceptibility zonation mapping is a fundamental procedure for geo-disaster management in tropical and sub-tropical regions. Recently, various landslide susceptibility zonation models have been introduced in Nepal with diverse approaches of assessment. However, validation is still a problem. Additionally, the role of various predisposing causative parameters for landslide activity is still not well understood in the Nepal Himalaya. To address these issues of susceptibility zonation and landslide activity, about 4,000 km2 area of central Nepal was selected for regional-scale assessment of landslide activity and susceptibility zonation mapping. In total, 655 new landslides and 9,229 old landslides were identified with the study area with the help of satellite images, aerial photographs, field data and available reports. The old landslide inventory was “blind landslide database” and could not explain the particular rainfall event responsible for the particular landslide. But considering size of the landslide, blind landslide inventory was reclassified into two databases: short-duration high-intensity rainfall-induced landslide inventory and long-duration low-intensity rainfall-induced landslide inventory. These landslide inventory maps were considered as proxy maps of multiple rainfall event-based landslide inventories. Similarly, all 9,884 landslides were considered for the activity assessment of predisposing causative parameters. For the Nepal Himalaya, slope, slope aspect, geology and road construction activity (anthropogenic cause) were identified as most affective predisposing causative parameters for landslide activity. For susceptibility zonation, multivariate approach was considered and two proxy rainfall event-based landslide databases were used for the logistic regression modelling, while a relatively recent landslide database was used in validation. Two event-based susceptibility zonation maps were merged and rectified to prepare the final susceptibility zonation map and its prediction rate was found to be more than 82 %. From this work, it is concluded that rectification of susceptibility zonation map is very appropriate and reliable. The results of this research contribute to a significant improvement in landslide inventory preparation procedure, susceptibility zonation mapping approaches as well as role of various predisposing causative parameters for the landslide activity.  相似文献   

17.
The purpose of this study is to present a weighting method, integrating subjective weight with objective weight, for landslides susceptibility mapping based on geographical information system (GIS). First, the landslide inventory, aspect, slope, proximity to streams of drainage network, proximity to railway, proximity to road, topography, elevation, lithology, tectonic activity and annual precipitation, including their subclasses, were taken as independent landslide causal factors. Second, objective weights of the causal factors were calculated according to the landslide area density based on entropy weighting method, and key factors were selected according to the rank of the objective weights. Third, trapezoidal fuzzy number weighting approach was used to assess the sub-classes of each key factor. Finally, a case study was carried out in Guizhou province, China. A landslide susceptibility map was created using weighted linear combination model based on GIS. Using a predicted map of probability, the study area was classified into four categories of landslide susceptibility: low, moderate, moderate-high, and high.  相似文献   

18.
In this paper, we propose a methodology for landslide susceptibility assessment at a regional scale in Yunnan, southwestern province of China. A landslide inventory map including 3,242 landslide points was prepared for the study area. Five factors recognized as correlated to landslide (namely, lithology, relative relief, tectonic fault density, rainfall, and road density) were analyzed and mapped in geographic information system. An index expressing the correlation between each factor and landslides [called class landslide susceptibility index (CLSI)] was proposed in the study. While analyzing landslide distribution in a large area, point aggregation might be expected. To quantify the uncertainty caused by aggregation, class landslide aggregation index was proposed. To account for the importance of each of the factors in the landslide susceptibility assessment, some weights were calculated by means of analytic hierarchy process. We propose a weighted class landslide susceptibility model (WCLSM), obtained by the combination of CLSI values of each factor with the correspondent weight. WCLSM performance in the study area was evaluated comparing the results obtained by first modeling all landslides and then by performing a time partition. The model was run including only landslides that occurred before 2009 and then validated with respect to landslides that occurred after 2009. The prediction–rate curve shows that the WCLSM model provides a good prediction for the study area. Of the study area, 21.4 % shows very high and high susceptibility and includes the 87.7 % of the number of landslides that occurred after 2009.  相似文献   

19.
In this study a Wenchuan earthquake-induced landslide susceptibility assessment was carried out in the Longnan area in northwestern China using a GIS-based logistic regression model. This region has frequently been affected by landslides in the past, and was intensively affected by the 5.12 Wenchuan earthquake which received considerable international attention. The data used for this study consist of the landslides triggered by the Wenchuan earthquake and a landslide pre-disposing factor database. Information regarding the landslide causative factors came from additional data sources, such as a digital elevation model (DEM) with a 30 × 30 m2 resolution, orthophotos, geological and land-use maps, precipitation records, and information on peak ground acceleration data from the 2008 earthquake. The statistical analysis of the relationship between the Wenchuan earthquake-triggered landslides and pre-disposing factors showed the great influence of lithological and topographical conditions on slope failures. The quality of susceptibility mapping was validated by splitting the study area into training and validation sections. The prediction capability analysis demonstrated that the landslide susceptibility map could be used for land planning as well as emergency planning by local authorities.  相似文献   

20.
Of the natural hazards in Turkey, landslides are the second most devastating in terms of socio-economic losses, with the majority of landslides occurring in the Eastern Black Sea Region. The aim of this study is to use a statistical approach to carry out a landslide susceptibility assessment in one area at great risk from landslides: the Sera River Basin located in the Eastern Black Sea Region. This paper applies a multivariate statistical approach in the form of a logistics regression model to explore the probability distribution of future landslides in the region. The model attempts to find the best fitting function to describe the relationship between the dependent variable, here the presence or absence of landslides in a region and a set of independent parameters contributing to the occurrence of landslides. The dependent variable (0 for the absence of landslides and 1 for the presence of landslides) was generated using landslide data retrieved from an existing database and expert opinion. The database has information on a few landslides in the region, but is not extensive or complete, and thus unlike those normally used for research. Slope, angle, relief, the natural drainage network (including distance to rivers and the watershed index) and lithology were used as independent parameters in this study. The effect of each parameter was assessed using the corresponding coefficient in the logistic regression function. The results showed that the natural drainage network plays a significant role in determining landslide occurrence and distribution. Landslide susceptibility was evaluated using a predicted map of probability. Zones with high and medium susceptibility to landslides make up 38.8 % of the study area and are located mostly south of the Sera River Basin and along streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号