首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In the DGEBA - pepa - CuSiF6 system (DGEBA is diglycidyl ether of bisphenol A; pepa is polyethylenepolyamine containing ethylenediamine (eda) and diethylenetriamine (deta)), a new flame retardant-hardener for epoxy resins in the form of a chelate complex [Cu(eda)(deta)]SiF6 was synthesized and incorporated into the DGEBA to obtain a number of CuSiF6-containing epoxy-amine polymers with reduced combustibility and flame-self-extinguishment properties. The resulting samples of the DGEBA/pepa-CuSiF6(I-V) were characterized using FTIR spectra, combustibility, and flammability tests and the smoke formation factor measurements. The combustibility of the polymer samples were investigated using “Ceramic tube” (CT) method. Results of CT measurement reveal that maximal temperature of gaseous products of combustion for modified epoxy-amine polymers in comparison with the unmodified epoxy appreciably goes down and weight loss lessen. The flammability of the samples was evaluated by means of UL94 BH and UL94 BV methods. The burning rate of the DGEBA/pepa-CuSiF6(III) and DGEBA/pepa-CuSiF6(IV) polymers containing 44 and 66 weight fractions of CuSiF6, respectively, is dramatically reduced compared to that for unmodified epoxy (these samples do not support flame propagation). The rburn. Values for the unmodified epoxy-amine sample (DGEBA/pepa) is 25.13 mm·min−1.  相似文献   

2.
This article deals with the selection of quaternary ammonium groups for synthesis of water‐soluble, photosensitive phenolic resins, containing acrylate and different quaternary ammonium salt groups (AQSPRs), via ring‐opening reactions of epoxy phenolic resin (EPR) with acrylic acid and with different tertiary amine‐protonic acid salts. Conversion of epoxy groups, solubility, photosensitive properties, and thermal decomposition of the different AQSPRs were compared. Modification of AQSPR with methanol solution of KOH to form phenolic resin containing both quaternary ammonium hydroxide groups and acrylate groups (AQHPR) was also studied. Characterization by IR spectrum, DSC, and thermal gravimetric analysis was carried out. The results showed that in the synthesis of AQSPRs containing different quaternary ammonium salt groups, the efficiency of ring‐opening reaction of epoxy phenolic resin with tertiary amine salt in terms of conversion of epoxy groups decreases in the following order: for the tertiary amine, N,N‐dimethyl benzylamine (DMBA) > triethylamine (TEA) > trimethylamine (TMA) > N,N‐dimethyl aniline (DMA) > triethanolamine (TENA) > tri(n‐butylamine) (TBA); for the protonic acid, HCl > HBr > HCOOH > HI > NaHSO3 > Cl3CCOOH > HClO4 > HBF4. All the AQSPRs except that from HClO4 can be dissolved in water, methanol, DMF, or DMSO. The gel content formed during UV exposure decreases in the following order of acids used in forming quaternary ammonium salt groups: HCl > HCOOH > NaHSO3 > Cl3CCOOH; or decreases in the following order of tertiary amines or hydrohalic acids used in forming the quaternary ammonium groups: TMA. > TEA > DBMA; HCl > HBr > HI. During thermal decomposition of EPR with about half epoxy groups of EPR ring‐opened with tertiary amine salt at 160°C for 0.5 h, water‐insoluble product was formed. The insoluble content and the % decrease of epoxy groups or halide ions increase in the following order: TMA < TEA < DMBA; HCl < HBr < HI. The % decrease of epoxy groups for the insoluble residue is nearly equal to the % decrease of halide ions. A crosslinking reaction mechanism occurred in the thermal decomposition was thus proposed. During the modification of AQSPR with KOH, conversion of quaternary ammonium chloride groups can reach above 90%. The decomposition temperature of the quaternary ammonium groups was lowered from 204 to 120°C after modification of AQSPR with KOH. The photosensitive properties of the resin after modification became lower. It is better to react DMBA · HCl with EPR so as to obtain a product with higher conversion of epoxy groups, good water solubility, moderate photosensitivity, lower decomposition temperature, and better postcuring. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2914–2922, 2004  相似文献   

3.
Phenol/dicyclopentadiene (DCPD) adducts were prepared from the BF3‐catalyzed reaction of p‐nonylphenol and dicyclopentadiene at molar ratios of 2 : 1 and 3 : 2. The phenol‐terminating adducts were consequently reacted with diethylenetriamine and formaldehyde using Mannich reaction conditions. These products containing phenol, amine and tricyclodecane functionalities in the same molecule can be used as epoxy curing agents. The diethylenetriamine was add to the phenol via Mannich reaction at approximately 50% theoretical equivalent. The multiple N H groups in amines and the O H groups in phenols provide crosslinking sites for epoxy resins. The cured epoxy resins show improvement in tensile strength and elongation in comparison with those cured by the poly(oxypropylene) diamine (400 molecular weight) or diethylenetriamine. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2129–2139, 1999  相似文献   

4.
The thermal degradation kinetics of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [poly(HB–HV)] under nitrogen was studied by thermogravimetry (TG). The results show that the thermal degradation temperatures (To, Tp, and Tf) increased with an increasing heating rate (B). Poly(HB–HV) was thermally more stable than PHB because its thermal degradation temperatures, To(0), Tp(0), and Tf(0)—determined by extrapolation to B = 0°C/min—increased by 13°C–15°C over those of PHB. The thermal degradation mechanism of PHB and poly(HB–HV) under nitrogen were investigated with TG–FTIR and Py–GC/MS. The results show that the degradation products of PHB are mainly propene, 2‐butenoic acid, propenyl‐2‐butenoate and butyric‐2‐butenoate; whereas, those of poly(HB–HV) are mainly propene, 2‐butenoic acid, 2‐pentenoic acid, propenyl‐2‐butenoate, propenyl‐2‐pentenoate, butyric‐2‐butenoate, pentanoic‐2‐pentenoate, and CO2. The degradation is probably initiated from the chain scission of the ester linkage. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1530–1536, 2003  相似文献   

5.
A novel phosphorus‐containing epoxy resin (EPN‐D) was prepared by addition reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide (DOPO) and epoxy phenol‐ formaldehyde novolac resin (EPN). The reaction was monitored by epoxide equivalent weight (EEW) titration, and its structure was confirmed by FTIR and NMR spectra. Halogen‐free epoxy resins containing EPN‐D resin and a nitrogen‐containing epoxy resin (XT resin) were cured with dicyandiamide (DICY) to give new halogen‐free epoxy thermosets. Thermal properties of these thermosets were studied by differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), thermal mechanical analyzer (TMA) and thermal‐gravimetric analysis (TGA). They exhibited very high glass transition temperatures (Tgs, 139–175°C from DSC, 138–155°C from TMA and 159–193°C from DMA), high thermal stability with Td,5 wt % over 300°C when the weight ratio of XT/EPN‐D is ≥1. The flame‐retardancy of these thermosets was evaluated by limiting oxygen index (LOI) and UL‐94 vertical test. The thermosets containing isocyanurate and DOPO moieties showed high LOI (32.7–43.7) and could achieve UL‐94 V‐0/V‐1 grade. Isocyanurate and DOPO moieties had an obvious synergistic effect on the improvement of the flame retardancy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Non‐amine‐derived tetrafunctional epoxies have several advantages over the amine‐derived N,N,N′,N′‐tetraglycidyl‐4,4′‐diaminodiphenyl methane (TGDDM) in high temperature applications. Although two non‐amine‐derived tetrafunctional epoxies were developed in our laboratory, further improvements in toughness using less loading amount is still desirable. Thus, a tertiary‐amine‐free, non‐planar and triphenylmethane‐containing tetrafunctional epoxy (STFE) with a sulfone spacer was synthesized. When it was mixed with diglycidyl ether of bisphenol A (DGEBA) and cured with 4,4′‐diaminodiphenylsulfone (DDS), both thermal and mechanical performances outperformed TGDDM. Moreover, STFE modified system shows the highest toughness (35.7 kJ m–2) among three amine‐free and triphenylmethane‐containing epoxies at merely 5 wt% loading. Molecular simulation and thermomechanical analysis results suggest that the improved mechanical properties could be related to the geometry of the molecule and larger free volume. Despite a marginal drop in Tg, the thermal degradation temperature is better than that of TGDDM/DDS. In addition, the moisture resistance of STFE/DGEBA/DDS is much better than that of TGDDM/DDS. Thus, STFE modified DGEBA could be a potential replacement for TGDDM in some high temperature applications. © 2020 Society of Chemical Industry  相似文献   

7.
The energetic material, 3‐nitro‐1,5‐bis(4,4′‐dimethyl azide)‐1,2,3‐triazolyl‐3‐azapentane (NDTAP), was firstly synthesized by means of Click Chemistry using 1,5‐diazido‐3‐nitrazapentane as main material. The structure of NDTAP was confirmed by IR, 1H NMR, and 13C NMR spectroscopy; mass spectrometry, and elemental analysis. The crystal structure of NDTAP was determined by X‐ray diffraction. It belongs to monoclinic system, space group C2/c with crystal parameters a=1.7285(8) nm, b=0.6061(3) nm, c=1.6712(8) nm, β=104.846(8)°, V=1.6924(13) nm3, Z=8, μ=0.109 mm−1, F(000)=752, and Dc=1.422 g cm−3. The thermal behavior and non‐isothermal decomposition kinetics of NDTAP were studied with DSC and TG‐DTG methods. The self‐accelerating decomposition temperature and critical temperature of thermal explosion are 195.5 and 208.2 °C, respectively. NDTAP presents good thermal stability and is insensitive.  相似文献   

8.
A novel phosphorous‐containing biphenol, 2‐(5,5‐dimethyl‐4‐phenyl‐2‐oxy‐1,3,2‐dioxaphosphorin‐6‐yl)‐ 1,4‐benzenediol (DPODB), was prepared by the addition reaction between 5,5‐dimethyl‐4‐phenyl‐2‐oxy‐1,3,2‐dioxaphosphorinane phosphonate (DPODP) and p‐benzoquinone (BQ). The compound (DPODB) was used as a reactive flame retardant in o‐cresol formaldehyde novolac epoxy resin (CNE) for electronic application. The structure of DPODB was confirmed by FTIR and NMR spectra. Thermal properties of cured epoxy resin were studied using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The flame retardancy of cured epoxy resins was tested by UL‐94 vertical test and achieved UL‐94 vertical tests of V‐0 grade (nonflammable). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3842–3847, 2006  相似文献   

9.
A series of novel copolymers, poly(methacryloyl‐2‐oxy‐1,2,3‐propanetricarboxylic acid‐coexo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalic acid) [poly(MTCA‐co‐ETAc)], poly(methacryloyl‐2‐oxy‐1,2,3‐propanetricarboxylic acid‐co‐hydrogenethyl‐exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalate) [poly(MTCA‐co‐HEET)], and poly(methacryloyl‐2‐oxy‐1,2,3‐propanetricarboxylic acid‐co‐α‐ethoxy‐exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthaloyl‐5‐fluorouracil) [poly(MTCA‐co‐EETFU)], were prepared from corresponding monomers by photopolymerizations at 25°C for 48 h. The polymers were identified by FTIR, 1H‐NMR, and 13C‐NMR spectroscopies. The number‐average molecular weights of the fractionated polymers determined by GPC were in the range from 9400 to 14,900 and polydispersity indices were 1.2–1.4. The in vitro IC50 values of polymers against mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) as cancer cell lines and mouse liver cells (AC2F) as a normal cell line were much higher compared to that of 5‐fluorouracil (5‐FU). The in vivo antitumor activities of monomers and polymers against mice bearing sarcoma 180 tumor cell line were better than those of 5‐FU. The inhibition of DNA replication and antiangiogenesis activities of MTCA and copolymers were better compared to those of 5‐FU. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 57–64, 2004  相似文献   

10.
A new monomer, exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidocaproic acid (ETCA), was prepared by reaction of maleimidocaproic acid and furan. The homopolymer of ETCA and its copolymers with acrylic acid (AA) or with vinyl acetate (VAc) were obtained by photopolymerizations using 2,2‐dimethoxy‐2‐phenylacetophenone as an initiator at 25 °C. The synthesized ETCA and its polymers were identified by FTIR, 1H NMR and 13C NMR spectroscopies. The apparent average molecular weights and polydispersity indices determined by gel permeation chromatography (GPC) were as follows: Mn = 9600 g mol?1, Mw = 9800 g mol?1, Mw/Mn = 1.1 for poly(ETCA); Mn = 14 300 g mol?1, Mw = 16 200 g mol?1, Mw/Mn = 1.2 for poly(ETCA‐co‐AA); Mn = 17 900 g mol?1, Mw = 18 300 g mol?1, Mw/Mn = 1.1 for poly(ETCA‐co‐VAc). The in vitro cytotoxicity of the synthesized compounds against mouse mammary carcinoma and human histiocytic lymphoma cancer cell lines decreased in the following order: 5‐fluorouracil (5‐FU) ≥ ETCA > polymers. The in vivo antitumour activity of the polymers against Balb/C mice bearing sarcoma 180 tumour cells was greater than that of 5‐FU at all doses tested. © 2001 Society of Chemical Industry  相似文献   

11.
A theoretical generalization of the experimental results of the investigation of the properties of the metalliferous epoxy chelate polymers (MECP) based on diglycidyl ether of bisphenol-A (DGEBA) has been carried out. Shown is the possibility of adjusting the structure and properties of MECP by changing the temperature of hardening and the content of a chelate hardener in an epoxy compound and by varying the composition of a chelate molecule, i.e., its structural fragments—a metal, ligand, and anion, which leads to changing the predominant mechanism of the reaction of the epoxy oligomer with the hardener, which can be catalytic or can proceed with the amino groups of a complex cation or unconnected ligand and with an anion. As a result, the epoxy chelate matrixes of different structures are formed. A correlation between the tensile strength (σt) and tensile modulus (Et), flexural strength (σf), and flexural modulus (Ef) of MECP—σt (Et) and σf = f(Ef)—has been established. The form of this correlation corroborates the presumption that the polymerization mechanism of the epoxy oligomer is changed and the various structures of the polymer matrixes are formed. © 1992 John Wiley & Sons, Inc.  相似文献   

12.
A new spiro ortho carbonate, 3,9‐di(p‐methoxybenzyl)‐1,5,7,11‐tetra‐oxaspiro(5,5)undecane was prepared by the reaction of 2‐methoxybenzyl‐1,3‐propanediol with di(n‐butyl)tin oxide, following with carbon disulfide. Its cationic polymerization was carried out in dichloromethane using BF3‐OEt2 as catalyst. The [1H], [13C]NMR and IR data as well as elementary analysis of the polymers obtained indicated that it underwent double ring‐opening polymerization. The polymerization mechanism is discussed. The curing reaction of bisphenol A type epoxy resin in the presence of the monomer and a curing agent was investigated. DSC measurements were used to follow the curing process. In the case of boron trifluoride‐o‐phenylenediamine (BF3‐OPDA) as curing agent, two peaks were found on the DSC curves, one of which was attributed to the polymerization of the epoxy group, and the other to the copolymerization of the monomer with the isolated epoxy groups or homopolymerization. However, when BF3‐H2NEt was used as curing agent, only one peak was present. IR measurement of the modified epoxy resin with various weight ratios of epoxy resin/monomer was performed in the presence of BF3‐H2NEt as curing agent. The results demonstrate that the conversion of epoxy group increases as the content of monomer increases. The curing process and the structure of the epoxy resin network are discussed. © 2000 Society of Chemical Industry  相似文献   

13.
Eight molecularly imprinted polymers (MIP1–MIP8) were synthesized with different functional monomers and porogens using 3,4‐dihydroxyphenylacetic acid (DOPAC) as a template. Thermal, radical bulk polymerization was employed in the presence of ethylene glycol dimethacrylate as a cross‐linker. A computational analysis indicated that complexes with four molecules of 4‐vinylpyridine, 1‐vinylimidazole and acrylonitrile had high positive enthalpies of formation. The polymers synthesized with these monomers showed an imprinting factor below 1. Polymer MIP8 synthesized with allylamine as the functional monomer, with the highest energy of interaction with DOPAC, was characterized by the highest imprinting factor equal to 1.91. Examination of the binding ability of DOPAC and a group of structurally related compounds showed that the strong interactions between amine groups in the polymer and carboxylic groups in the analyte governed the recognition mechanism. The Langmuir adsorption model and the pseudo‐second‐order mechanism properly evaluated the MIP8 and non‐imprinted polymer 8 adsorption characteristics. Scatchard analysis revealed that MIP8 had two classes of heterogeneous binding sites with Kd(1) = 0.12 µmol L?1 and Kd(2) = 1.46 µmol L?1. Finally, the potential application of MIP8 for separation of DOPAC was demonstrated. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
Amino‐functionalized multiwalled carbon nanotubes (MWCNT‐NH2s) as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA) toughened with amine‐terminated butadiene–acrylonitrile (ATBN). The curing kinetics, glass‐transition temperature (Tg), thermal stability, mechanical properties, and morphology of DGEBA/ATBN/MWCNT‐NH2 nanocomposites were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis, a universal test machine, and scanning electron microscopy. DSC dynamic kinetic studies showed that the addition of MWCNT‐NH2s accelerated the curing reaction of the ATBN‐toughened epoxy resin. DSC results revealed that the Tg of the rubber‐toughened epoxy nanocomposites decreased nearly 10°C with 2 wt % MWCNT‐NH2s. The thermogravimetric results show that the addition of MWCNT‐NH2s enhanced the thermal stability of the ATBN‐toughened epoxy resin. The tensile strength, flexural strength, and flexural modulus of the DGEBA/ATBN/MWCNT‐NH2 nanocomposites increased increasing MWCNT‐NH2 contents, whereas the addition of the MWCNT‐NH2s slightly decreased the elongation at break of the rubber‐toughened epoxy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40472.  相似文献   

15.
Petroleum‐based pitches were used as filler materials to study the effects of heat‐treatment‐induced changes in pitch structure on the thermal conductivity of epoxy‐based composites. The heat treatment was performed in two steps: the first involved heating the pitch to 250 °C in order to remove the low‐molecular‐weight compounds from the pitch, and the second involved heating the pitch to either 430 or 450 °C. There was no significant difference in the curing behavior of the diglycidyl ether of bisphenol A (DGEBA)/pitch composites, regardless of the heat‐treatment temperature. However, the thermal conductivity of the DGEBA/pitch composites improved with increasing heat‐treatment temperature, and the epoxy composite prepared with pitch heat‐treated at 430 °C exhibited the maximum thermal conductivity. This can be attributed to structural changes in the pitch, such as the distance between adjacent planes (d‐spacing), crystallite height (Lc) and crystallite width (La). Although Lc of the pitch increased with increasing heat‐treatment temperature, the d‐spacings and La decreased. These results suggest that the heat treatment of the pitch led to a well‐stacked crystalline structure. However, compared with the pitch heat‐treated at 430 °C, that heat‐treated at 450 °C exhibited lower thermal conductivity in the DGEBA/pitch composite because of the low La, resulting in the loss of basal carbon as a consequence of in situ gasification, and pyrolysis of the low‐molecular‐weight compounds in the pitch. © 2013 Society of Chemical Industry  相似文献   

16.
One of the most important applications of chelating and functional polymers is their capability to recover metal ions from their solutions. This study concerns the synthesis of a hydrophilic glycidyl methacrylate (GMA) monomer‐bearing diethanol amine (DEA) chelating group from the reaction of GMA and DEA. The formed adduct (A) was characterized via FTIR and mass spectra and subjected to homopolymerization and binary copolymerization with ethyl methacrylate and butyl methacrylate. The copolymerization process was carried out via a semi‐batch emulsion polymerization technique by using potassium persulphate/sodium bisulphite as a redox pair initiation system and sodium dodecyl benzene sulphonate as an emulsifier at 65°C. The obtained polymers were characterized via FTIR, thermal gravimetric analysis, and UV–VIS. Volume‐average diameters (Dv) in nanoscale range for the prepared polymers were confirmed by transmission electron microscope investigation. It was shown that the obtained nano‐size chelating polymers have a powerful adsorption character toward transition metal ions (Cu+2, Cr+3, Ni+2, and Co+2) and efficient selectivity for Cu+2 and Ni+2 ions at normal pH. The effects of pH, time, and different comonomer feed compositions on the uptake of metal ions were studied. The reaction between the obtained chelating resins and different metal ions was confirmed to be a second‐order reaction. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Epoxy‐based shape‐memory polymers (ESMPs) are a type of the most promising engineering smart polymers. However, their inherent brittleness limits their applications. Existing modification approaches are either based on complicated chemical reactions or done at the cost of the thermal properties of the ESMPs. In this study, a simple approach was used to fabricate ESMPs with the aim of improving their overall properties by introducing crosslinked carboxylic nitrile–butadiene nanorubber (CNBNR) into the ESMP network. The results show that the toughness of the CNBNR–ESMP nanocomposites greatly improved at both room temperature and the glass‐transition temperature (Tg) over that of the pure ESMP. Meanwhile, the increase in the toughness did not negatively affect other macroscopic properties. The CNBNR–ESMP nanocomposites presented improved thermal properties with a Tg in a stable range around 100 °C, enhanced thermal stabilities, and superior shape‐memory performance in terms of the shape‐fixing ratio, shape‐recovery ratio, shape‐recovery time, and repeatability of shape‐memory cycles. The combined property improvements and the simplicity of the manufacturing process demonstrated that the CNBNR–ESMP nanocomposites are desirable candidates for large‐scale applications in the engineering field as smart structural materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45780.  相似文献   

18.
A mechanistic approach including both reactive and nonreactive complexes can successfully simulate both nonreversing (NR) heat flow and heat capacity (Cp) signals from modulated‐temperature DSC in isothermal and nonisothermal reaction conditions for different mixtures of diglycidyl ether of bisphenol A + aniline. The reaction of the primary amine with an epoxy–amine complex initiates cure (E1A1 = 80 kJ mol?1), whereas the reactions of the primary amine (E1OH = 48 kJ mol?1) and secondary amine (E2OH = 48 kJ mol?1) with an epoxy–hydroxyl complex are rate determining from about 2% epoxy conversion on. The reliability of the proposed mechanistic model was verified by experimental concentration profiles from Raman spectroscopy. When cure temperatures are chosen inside or below the full cure glass‐transition region, vitrification takes place partially or completely, respectively, as can be concluded from the magnitude of the stepwise decrease in Cp. The effect of the epoxy conversion (x) and mixture composition on thermal properties such as the glass‐transition temperature (Tg), the change in heat capacity at TgCp(Tg)], and the width of the glass transition region (ΔTg) are considered. The Couchman relationship, in which only Tg and ΔCp(Tg) of both the unreacted and the fully reacted systems are needed, was evaluated to predict the Tgx relation by using simulated concentration profiles. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91:2798–2813, 2004  相似文献   

19.
Two series of novel phosphorus‐containing poly(alkylene) amines with or without aromatic groups were synthesized via reacting phosphoryl chloride derivatives with commercially available polyetheramines, ethylenediamine and N‐phenyl‐1,4‐phenylenediamine, respectively. Chemical structures of the amines were characterized with FTIR, NMR, P (phosphorus) content measurement, and amine content titration. These amines were then utilized as curing agents to react with diglycidyl ether of bisphenol A for preparing phosphorus containing epoxy polymers. The introduction of soft ? P? O? linkage, polyalkyene, and hard aromatic group into the backbones of the synthesized phosphorus‐containing amine (PCA) provides epoxy resins with tunable flexibility. Thermal analysis of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) reveals that these resulted epoxy resins possess moderate Tg's and thermal stability. Furthermore, high char yields in TGA and high limited oxygen index (LOI) values indicate that these phosphorus‐containing epoxy (PCE) resins are capable of exhibiting excellent flame retardant properties. These polymers can be potentially utilized in flame retardant epoxy coatings and other applications. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3526–3538, 2001  相似文献   

20.
A new monomer, 3,6‐endo‐methylene‐1,2,3,6‐tetrahydrophthalimidobutanoyl‐5‐fluorouracil (ETBFU), was synthesized by reaction of 3,6‐endo‐methylene‐1,2,3,6‐tetrahydrophthalimidobutanoyl chloride and 5‐fluorouracil. The homopolymer of ETBFU and its copolymers with acrylic acid (AA) or vinyl acetate (VAc) were prepared by photopolymerization using 2,2‐dimethoxy‐2‐phenylacetophenone as an initiator at 25 °C. The synthesized ETBFU and its polymers were identified by FTIR, 1H NMR and 13C NMR spectroscopies. The ETBFU content in poly(ETBFU‐co‐AA) and poly(ETBFU‐co‐VAc) was 43 and 14 mol%, respectively. The apparent number‐average molecular weight (Mn) of the polymers determined by GPC ranged from 8400 to 11 300. The in vitro cytotoxicity of the samples against mouse mammary carcinoma (FM3A), mouse leukaemia (P388), and human histiocytic lymphoma (U937) cancer cell lines decreased in the order 5‐FU ≥ ETBFU > poly(ETBFU) > poly(ETBFU‐co‐AA) > poly(ETBFU‐co‐VAc). The in vivo antitumour activity of the polymers against Balb/C mice bearing sarcoma 180 tumour cells was greater than that of 5‐fluorouracil at all doses tested. © 2000 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号