首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
为有效改善冷启动过程中缸套-活塞环的摩擦状态,减少摩擦功率损耗,通过建立混合润滑状态下活塞环-缸套摩擦力的数学模型,研究不同环境温度下冷启动时活塞环-缸套摩擦性能及润滑状态的变化规律,获得某型号柴油机冷启动时活塞环-缸套摩擦力随温度变化的曲线,并拟合提出预测摩擦力随温度变化的模型。结果表明,随着环境温度的降低,活塞环-缸套摩擦力的平均值稍有升高,而摩擦力最大值的升高幅度很大。对活塞环-缸套摩擦力数学模型进行仿真,仿真结果与活塞环-缸套摩擦力温变效应预测模型计算结果误差不大于8.526%,验证构建的最大摩擦力温变数学模型的可靠性。  相似文献   

2.
发动机缸套-活塞环摩擦磨损特性试验研究   总被引:3,自引:0,他引:3  
利用缸套-活塞环摩擦磨损试验台研究了速度,温度,载荷,供油等因素对缸套-活塞环系统摩擦磨损特性的影响。试验结果表明,缸套-活塞环摩擦副在发动机工作循环中润滑状态不断发生变化。在试验条件下,温度对摩擦磨损有显著影响,载荷和速度对摩擦力的影响较小。  相似文献   

3.
LNG燃料柴油机与传统燃料柴油机相比缸内燃烧温度更高。为探究不同温度下缸套-活塞环摩擦性能与温度的映射关系,设计室温和60、90、120℃4种不同温度,在相同载荷和转速下在往复式摩擦磨损试验机上对缸套-活塞环进行不同温度下的摩擦性能试验,通过测试摩擦过程中摩擦力的变化以及分析试验后缸套磨损表面形貌,探讨温度对缸套-活塞环摩擦性能的影响规律。试验缸套试样材质为耐磨合金铸铁,活塞环切片与缸套切片大小对应,材质为球墨铸铁。试验结果表明:随着温度的升高摩擦力呈现先减小后增大的趋势,与室温相比,60℃温度下摩擦力降幅为13.45%,且表现出较好的稳定性,但在120℃下摩擦力增幅为10.66%;试验工况下,60℃时缸套表面形貌参数均处于较优水平。研究表明,适当的温度环境对于摩擦配副之间的润滑性能有一定的促进作用,但温度过高会导致摩擦副的摩擦性能不稳定,破坏摩擦副间氧化膜,这不仅可能破坏润滑油膜的形成,也会影响摩擦副的磨损表面形貌。因此存在合适的温度使得缸套-活塞环的摩擦性能达到最优状态。  相似文献   

4.
柴油机缸套表面微沟槽织构润滑性能仿真分析   总被引:4,自引:0,他引:4       下载免费PDF全文
针对缸套表面织构微沟槽形貌,建立了缸套-活塞环摩擦副混合润滑理论模型,并采用MATLAB编程计算来分析微沟槽形貌参数对其润滑摩擦性能的影响规律。结果表明:缸套表面微沟槽可以形成很好的油膜压力,有效地改善缸套-活塞环间的润滑状态;随着微沟槽角度的增大,最小膜厚比逐渐增大,其润滑效果也越来越好,综合考虑摩擦润滑性能和机油耗性能情况下,最佳的微沟槽角度为60°。在上止点附近,面积占有率变化Sp对量纲一摩擦力影响较大;在其他区域,面积占有率对摩擦力影响不大;综合考虑油膜厚度与摩擦力,当Sp=0.15时效果最好。随着微沟槽深宽比e的增大,量纲一摩擦力不断增大,当e从0.025增大到0.150时,平均量纲一摩擦力增大了2.3倍,但深宽比过大,润滑效果将会减弱。研究结果认为,最佳深宽比的范围为0.05~0.08。
  相似文献   

5.
活塞环廓形决定着活塞环润滑时的油膜分布,对缸套活塞环摩擦副的摩擦、润滑、磨损有着极其重要的影响。将活塞环廓形用多项式函数表示,基于反演法,从活塞环的载荷分析出发,通过序列二次规划(SQP)法,反向求解满足特定载荷和压力中心条件下的最小活塞环-缸套摩擦因数参量及对应的活塞环外圆面最优廓形。结果表明,经过优化的高次数活塞环廓形将带来更小的摩擦因数和摩擦力。  相似文献   

6.
为模拟内燃机缸套-活塞环运动,设计适用于缸套-活塞环的往复式摩擦性能试验台,由传动系统、加热系统、加载系统组成。根据系统中悬臂梁和活塞环专用夹具不同的使用要求,分别进行结构设计和有限元分析。结果表明,当实验条件达到预设极限值(加热温度130℃,摩擦力500 N)时悬臂梁和活塞环专用夹具均能满足使用要求。试验台使用二维力测力传感器,通过特殊装配设计,可同时测量摩擦力和法向负载。通过摩擦性能实验验证,缸套-活塞环在较低负荷(61.7、92.6、123.4 N)条件下,摩擦因数随转速的增大而急剧减小;在较高负荷(250.8、322.5 N)条件下,摩擦因数随转速的增大有所减小并逐渐趋于稳定状态。  相似文献   

7.
在内燃机实际运行中,润滑油的粘度直接影响到润滑油膜的状态,因而活塞环在缸套中不同位置时的摩擦、润滑状态各不相同。文中以缸套活塞环为研究对象,建立了润滑计算模型,并运用该模型对缸内压力、温度、油膜厚度和摩擦系数进行了分析。结果表明,润滑油膜厚度和摩擦系数随转速改变而发生变化,而剪切稀化导致润滑油粘度减小是引起该变化的主要原因。最后,通过对计算结果的分析,提出了适用于缸套活塞环的润滑油粘度指标。  相似文献   

8.
缸套在燃烧冲击和活塞敲击激励下会产生接近表面粗糙度的动态变形,极有可能影响缸套-活塞环组件间的摩擦润滑过程。为了研究缸套动态变形潜在的影响,将动力学仿真获取的缸套内表面的动态变形经过处理后导入到润滑模型中,同时采用数值积分计算的方式对油液压力应力因子和剪切应力因子进行实时计算求解,使仿真计算更加符合实际情况。通过搭建同时考虑缸套变形与油液剪切特性影响的改进润滑模型,计算得到整个工作循环内活塞环上的最小油膜厚度和摩擦力曲线。结果表明:考虑缸套动态变形后的最小油膜厚度和摩擦力曲线出现了明显的波动,而且考虑缸套动态变形后的摩擦力比未考虑之前出现了明显下降。  相似文献   

9.
用超声波加工缸套内表面微坑,提出相应的微坑缸套-活塞环摩擦副润滑理论模型,运用流体润滑理论微坑单元进行分析,并运用MATLAB求解了该数学模型,得出了单个微坑内外的油膜压力、微坑承载力和摩擦力等相关参数。  相似文献   

10.
活塞环—缸套摩擦副的二维润滑分析   总被引:5,自引:0,他引:5  
活塞环—缸套摩擦副的润滑状态直接影响着发动机的正常工作,缸套的磨损状况是决定发动机寿命的重要因素。对活塞环—缸套摩擦副进行了二维润滑分析,考虑了多种因素的影响,联解了二维雷诺方程、膜厚方程和载荷平衡方程。计算结果表明:活塞环—缸套摩擦副的润滑状态受多种因素的影响。同时计算结果也显示,通常采用的一维润滑分析有其局限性,对活塞环—缸套摩擦副进行二维润滑分析是十分必要的。  相似文献   

11.
以活塞环及缸套作为研究对象,基于AVL-EXCITE对不同规格润滑油润滑下的发动机活塞油膜厚度及活塞摩擦损耗进行仿真分析。结果表明:发动机第三道活塞环油膜厚度对发动机摩擦损失影响最大。通过对不同规格润滑油条件下第三道活塞环油膜厚度及总摩擦损失进行仿真,表明当发动机转速在1 000~3 000 r/min时,活塞环处于混合润滑状态,随着转速的增加油膜厚度先增大后减少;降低黏度有助于减少低速轻载时的摩擦损耗,但黏度过低会使重载状态下活塞油膜厚度变薄而增大摩擦损耗。通过整车NEDC试验对仿真结果予以验证。  相似文献   

12.
以发动机缸套-活塞环摩擦副为研究对象,基于二维瞬态平均Reynolds方程与微凸体接触模型,建立缸套-活塞环二维瞬态流体动压润滑模型.考虑缸套-活塞表面粗糙度、润滑油的变黏度效应以及汽缸套圆周方向形变等的影响,计算得到二维流体动压润滑下的最小油膜厚度、摩擦力等,并与采用一维模型计算得到的结果进行比较.结果表明,2种模型的最小油膜厚度、摩擦力的计算结果几乎是相等的,但采用二维润滑模型能够有效地对活塞环表面压力分布情况进行分析,并得到采用一维模型无法求解的环面压力分布特征.  相似文献   

13.
设计并搭建TCLPR-1缸套-活塞环摩擦磨损试验机,进行两组工况相同的试验,实时采集试验过程中缸压、缸套温度、缸套-活塞环间油膜接触电阻、平均摩擦力、曲轴转速等信息,分析缸套-活塞环摩擦副的运动情况。结果表明:缸套-活塞环在本试验机的运行工况与实际相吻合,可通过本试验机对缸套-活塞环进行摩擦磨损试验研究。  相似文献   

14.
内燃机缸孔内的时变效应和气压变化对活塞环受力影响不可忽略,而织构形貌参数对发动机油耗性能的影响也有待深入研究。为此,构建考虑时变效应和缸内气体压力变化的织构化缸套-活塞环摩擦副的流体动压润滑模型,采用多重网格法求解模型获得润滑油膜压力分布规律,进而获得缸套-活塞环间的最小油膜厚度和摩擦力,并针对装配织构缸套的发动机开展台架试验。计算结果表明:缸内气体压力变化影响活塞环径向受力,时变效应使缸套-活塞环受挤压效应的影响;织构化缸套能够增加润滑油膜厚度、减少摩擦力,当微凹坑深度为4~7 μm,织构面积密度较小如为5%、10%时,能够获得较佳的最小油膜厚度与摩擦力值。台架试验表明,与原发动机相比,装配织构缸套的发动机油耗性能明显改善,在中高转速下燃油耗降幅较为显著,油耗最大下降14.5%,而24 h机油耗减少26.48%。  相似文献   

15.
综合考虑活塞环表面形貌、弹性变形、运动面型线影响,建立柴油机活塞环-缸套摩擦副的弹性流体动压润滑计算模型,分析活塞环表面纹理方向及粗糙度大小对活塞环窜气及摩擦功耗的影响。研究发现,随着转速的提升,活塞的窜气量及摩擦功耗会加剧,导致发动机效率降低;活塞环-缸套摩擦副的表面纹理方向影响窜气量和摩擦功耗,采用活塞环横向纹理和缸套纵向纹理配合时,对活塞环窜气量及摩擦功耗的改善效果较好;活塞环和缸套的表面粗糙度对密封和润滑特性有较大影响,当缸套表面粗糙度增大时,窜气量先减小后增大,摩擦功耗先增大后减小,而在一定范围内,当活塞环表面粗糙度增大时,窜气量和摩擦功耗都减小。  相似文献   

16.
李楠  车银辉  李洋 《润滑与密封》2022,47(8):141-149
大缸径、长冲程的大功率柴油机的活塞环-缸套摩擦副易发生异常磨损,使柴油机动力性能丧失,甚至发生拉缸等重大事故,通过先进的表面处理技术可显著改善活塞环-缸套摩擦副的润滑条件,提高活塞环-缸套摩擦副的摩擦学性能。采用阴极电弧离子镀技术在铬-陶瓷复合镀(CKS)活塞环表面制备厚度为7 μm的DLC薄膜,研究CKS活塞环表面的DLC薄膜在柴油机模拟工况下的摩擦学性能。结果表明:在干摩擦、室温贫油和高温贫油的工况下,CKS活塞环表面的DLC薄膜可以显著减小活塞环-缸套摩擦副对摩的摩擦因数,降低缸套的磨损;摩擦过程中DLC薄膜与润滑油的协同润滑作用以及DLC薄膜的石墨化是改善活塞环-缸套摩擦副摩擦学性能的主要原因。  相似文献   

17.
段京华  孙军 《润滑与密封》2015,40(12):56-60
以一多缸内燃机为对象,研究表面粗糙度和润滑油黏度对活塞裙-缸套摩擦副润滑性能的影响。建立活塞二阶运动方程与平均Reynolds方程相结合的活塞裙-缸套摩擦副润滑分析模型。活塞二阶运动方程采用Broyden方法求解,应用有限差分法进行活塞裙-缸套摩擦副的润滑分析。结果表明,表面粗糙度对活塞裙-缸套摩擦副润滑性能影响不明显,而随润滑油黏度增加,活塞裙-缸套摩擦副的最小油膜厚度、摩擦力和摩擦功率增加,最大油膜压力在进气和排气行程随润滑油黏度变化比较明显,在其他行程变化较小。  相似文献   

18.
朱黄龙  孙军  王虎  赵小勇  李悦 《机械设计》2012,29(10):1-4,8
从润滑分析和试验测量两个方面论述了内燃机活塞环-缸套摩擦副润滑研究的现状和进展,讨论并展望了活塞环-缸套摩擦副润滑研究中需要进一步解决的问题.  相似文献   

19.
张迪  顾春兴 《润滑与密封》2023,48(9):133-139
应用表面织构改善活塞环/缸套摩擦副的摩擦学特性,是改善其工作经济性、可靠性的最有效手段之一。以质量守恒润滑模型与微凸体接触模型为基础,构建面向织构系统的混合润滑模型。在混合润滑模型的基础上,通过选择合适的活塞环/缸套摩擦副性能评价指标,确定优化活塞环/缸套摩擦副性能的目标函数,结合粒子群优化算法,研究一种在活塞环表面对不同深度微凹坑进行优化设计的新方法。基于大量的数值模拟试验可以发现,具有优化织构深度的微织构可以提高活塞环/缸套摩擦副摩擦学性能,提高了承载能力,降低了摩擦力,验证了所提出的织构优化设计方法是可行的。  相似文献   

20.
庞浩  袁栋  王飞 《机械制造》2011,49(4):54-56
在考虑到影响活塞环一气缸套摩擦副润滑状态的多种因素下,采用活塞环一气缸套摩擦副的二维瞬态流体动力润滑分析模型.建立了更符合实际工程应用的磨损模型,讨论了气缸套磨损对润滑可靠性的影响。分析结果显示,容易忽视的气缸套表面的二维磨损变形对气缸套的摩擦学特性有重大影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号